Accumulated Local Effects (ALE) and Package ALEP1ot

Jingyu Zhu, Daniel W. Apley

May 24, 2018

1 Motivation: Partial Dependence Plots, Marginal Plots, and the
Need for ALE Plots

Due to their flexibility, black box supervised learning models (for example, complex trees,
neural networks, and support vector machines) have been widely used to capture nonlinear
relationships in predictive modeling. However, they often lack interpretability in the sense that
it is difficult to study the effect of each predictor on the response and the interactions among
different predictors. Understanding these effects and interactions is obviously crucial if the
predictive models serve an explanatory purpose. Even if the models are purely predictive, effect
visualization is an important model diagnostic tool for the users.

Suppose that we have fit a black box supervised learning model to approximate E[Y|X =
z] =~ f(x). Here, Y is a scalar response variable, X = (X1, ..., X4) is a d-dimensional vector of
predictors, and f(-) is the fitted model that predicts Y (or the probability that Y falls into a
particular class in the classification setting) as a function of X. The training data to which we
fit the model is {y;, z; = (zi1,....,ziq) : @ = 1,...,n}. For simplicity of notation, we omit the
symbol and denote our fitted model by f instead of f . We use upper case X and Y to denote
random variables, and lower case to denote specific values of the random variables.

The objective here is to visualize the ‘main effect” dependence of f(z1,...,z4) on each predic-
tor x1,...,zq as well as the lower-order ‘interaction effects’ among different predictors. In the
introduction of this vignette, we illustrate concepts for the simple case of d = 2. General d
is conceptually similar and is considered throughout the rest of the vignette. Details can be
found in Apley (2016). One popular visualization approach is the partial dependence (PD) plot
proposed in Friedman (2001). To visualize the effect of one predictor, say x1, on the response
f(+), a PD plot plots the function

frpo(x1) = E[f (21, X5)] (1)
versus x1. An estimate of (1) is
fpp(z1) = % > Flar,wiz) (2)
i=1

Figure 1(a) illustrates how fi pp(x1) is computed at a specific value 21 = 0.3 for a toy example
with n = 200 observations of (X, X2) following a uniform distribution along the line segment
x93 = x1 but with independent N (0,0.052) variables added to both predictors. The salient point
in Figure 1(a), which illustrates the problem with PD plots, is that the expectation in (1) is the
weighted average of f(x1, X2) as Xy varies over its marginal distribution. This weighted average

is equivalent to an integral over the entire vertical line segment in Figure 1(a) and requires
rather severe extrapolation beyond the envelope of the training data. If one were to fit a simple
parametric model (e.g., f(z) = Bo + Bix1 + f273) of the correct form, then this extrapolation
might be reliable. However, by nature of its flexibility, a nonparametric supervised learning
model like a regression tree cannot be expected to extrapolate reliably. Hence, a PD plot is not
an ideal tool for visualization when the predictors are correlated.

o _| marginal (a) .-‘.:, o (b) .‘.....
T |distributio TR - PO
fX AL s e *
(4] - - e L e - st ..
S ? R © _| conditional P 14 4
o - LI | o . . . - e w
IO distribution e
© oo o | OfXalX; =03 . SR
o | . 0"0‘.0. o | PV e
L] ".. - th AR
g 3eer " LTS S
< | . :‘: . . <+
© N :.7.' * ©
- s ;‘

g —:‘.:.1-'. et PD plOI at x g 7 M le

AL A averages f(xy, X3) averages f (x;, X;)
2 - "‘ . Sf'ir_:]et_marg;';?l = "‘ . ‘ oyer?he co‘nditional

. Istribution ot A, . distribution of X, |X, = x;

I I I I I I I I I | | |

0.0 02 04 06 08 1.0 0.0 0.2 04 06 08 1.0

X1 X1

Figure 1: Tllustration of the differences between the computation of (a) fi pp(z1) and (b)
fim(x) at 21 = 0.3.

The extrapolation in Figure 1(a) that is required to calculate f; pp(z1) occurs because the
marginal density of X5 is much less concentrated around the data than the conditional density
of Xo given X; = z1, due to the strong dependence between Xy and X;. Marginal (M) plots are
alternatives to PD plots that avoid such extrapolation by using the conditional density in place
of the marginal density. As illustrated in Figure 1(b), an M plot of the effect of x; is a plot of
the function

fim (1) = E[f (X1, Xo)| X1 = 2] (3)

versus z1. A crude estimate of fi ps(z1) is

fon(e) = —— 37 flan i) 4)

n(xl) iEN (1)

where N(z1) C {1,2,...,n} is the subset of row indices i for which z;; falls into some small,
appropriately selected neighborhood of z1, and n(z1) is the number of observations in the neigh-
borhood. Although more sophisticated kernel smoothing methods are typically used to estimate
fi,m(x1), we do not consider them here, because there is a more serious problem with using
fi,m(z1) to visualize the main effect of x; when X; and X; are dependent. Namely, using
Ji,m(z1) is like regressing Y onto X; while ignoring (i.e., marginalizing over) the nuisance vari-
able X5. Consequently, if Y depends on Xy and Xo, fi ar(z1) will reflect both of their effects, a
consequence of the omitted variable bias (OVB) phenomenon in regression. Viewed another way,
if Y depends on X; but not X, correlation between X; and Xp will result in fi pr(z2) making
it appear as though Y depends on X5. In machine learning problems using large observational
databases, predictor variables are often highly correlated. M Plots will then be severely biased
by the OVB problem, rendering them virtually useless for visualizing the effects of the individual
predictors.

2 Estimation and Interpretation of ALE Main Effects with the
ALEPlot Package

The accumulated local effects (ALE) plots proposed in Apley (2016) constitute a visualization
approach that avoids both the extrapolation problem in PD plots and the OVB problem in M
plots. The ALE main effect of the predictor z;, j € {1,...,d} is defined as!

T Af(X1, . X
fiaLe(zj) = / _E[f(éxjd)ﬂXj = zjldzj — a1 (5)

Here, 29 ; is an approximate lower bound of X;. The constant ¢ is chosen such that f; arg(Xj;)
has a mean of zero with respect to the marginal distribution of X;. An ALE plot of the main
effect of z; is a plot of an estimate of f; argp(x;) versus x; and it visualizes the main effect
dependence of f(-) on z;.

The estimate of the ALE main effect is obtained by replacing the integral in (5) with a
summation and the derivative with a finite difference, i.e.,

fiace(z) =

. Z [f(zr,s i) — f(zro1j, i) — & (6)

= (k) itz; ;€N (k)
where the notation is as follows, and the constant ¢ is chosen so that %Z?:l fj,ALE(xi’j) =0.

Let @;\; = (wi; : | = 1,...,d;l # j), where the subscript \j indicates all variables but the
jth, and let {N;(k) = (zx—1,5, 2k, : K = 1,2, ..., K} be a sufficiently fine partition of the sample
range of {z;; : i = 1,2,...,n} into K intervals.? The ALEP1lot functions choose zj ; as the %
quantile of the empirical distribution of {x;; : ¢ = 1,2,...,n} with 2z ; chosen just below the
smallest observation, and zx ; chosen as the largest observation. For k = 1,2,..., K, let n;(k)
denote the number of observations in {x;; : i = 1,...,n} that fall into the kth interval N;(k), so
that S5, n;(k) = n. For a particular value x for the predictor z;, let kj(z) denote the index of

the interval into which = falls, i.e., ¥ € (2k;(2)-1,5» 2k, (x),j]- Figure 2 illustrates the computation

of the ALE main effect estimator fLALE(xj) for the first predictor j = 1 for the case of d = 2
predictors.

!Technically, this definition of the theoretical ALE effect assumes differentiability of f(-), and the definition
must be modified for nondifferentiable f(-), as discussed in Apley (2016). However, the estimator below and
its implementation in the package remains valid, since the estimators use finite differences and summations, as
opposed to differentiation and integration.

2K is an input argument in the ALEP1ot functions, and we typically use K around 100, with larger values
often give better results. Note that the algorithm may adjust (reduce) K internally if the predictors are discrete
and have fewer than 50 distinct values. K is only used if the predictor is numeric. For factor predictors, the
equivalent of K is the number of factor levels, which is automatically determined internally.

L]
L]
L]
L]
L]
.
L] ..
| L]
L 3
. e
X2 *
L]
je
L]
L]
L]
. L]
L] ™ .
L]
. L]
L]
Z0.1 211 221 I3l 241 5.1

N1 N2 NGB M) N(S)

Figure 2: Illustration of the notation and concepts in computing the ALE main effect estimator
ijALE(:z:j) for j = 1 with d = 2 predictors. The bullets are a scatterplot of {(x;1,2;2) : i =
1,2,...,n} for n = 30 training observations. The range of {z;; : i = 1,2,...,n} is partitioned
into K = 5 intervals {Ni(k) = (zk—11,2k1) : £ = 1,2,...,5} (in practice, K should usually be
chosen much larger than 5.) The numbers of training observations falling into the 5 intervals are
ni1(l) =4,n1(2) = 6,n1(3) = 6,n1(4) = 5, and n1(5) = 9. The horizontal lines segments shown
in the N1 (4) region are the segments across which the finite differences f(24, z;\;) — f (23,5, 75\ ;)
are calculated and then averaged in the inner summand of (6) corresponding to k = 4 and j = 1.

The ALEP 1ot package is used to visualize the main effects of individual predictors and their
second-order interaction effects (to be discussed in the next section) in black-box supervised
learning models. It consists of two primary functions ALEP1ot and PDP1lot, which create ALE
plots and PD plots respectively, given a fitted supervised learning model and the training data set
to which it was fit. Note that the ALEP1ot package depends on the yaImpute package, which is
needed for ordering categorical predictors according to a nearest-neighbors type criterion. Hence
before installing and loading the ALEP1ot package, we need to install the yaImpute package.
The following example illustrates the use of the ALEP1ot package to visualize the main effects
with a simulated example.

Example 1. Visualization of ALE Main Effects with Simulated Data

Suppose X = {Xi, X, X3, X4} is a set of d = 4 predictor variables, where each X; : i €
{1,2, 3,4} follows a uniform distribution on the interval [0, 1], and all 4 predictors are independent
(an example with correlated predictors is given later). Suppose also that the response variable is

exp(—5 + 10z3)
1+ exp(—5+ 10z3)

Y = 4z1 + 3.8725° + 2.97

I

where € follows a N(0,12) distribution. The coefficients 4, 3.87, and 2.97 were chosen so that
the three terms have approximately the same variance. We generated n = 5000 observations
{vi,zi = (i1,...,xi4) 1 @ = 1,...,n} from this model as the training data set, to which we fit
a neural network model using the nnet package by Venables and Ripley (2002) with 8 nodes
in the single hidden layer, a linear output activation function, and a decay parameter of 0.1.

These parameters were chosen as approximately optimal via multiple replicates of 10-fold cross-
validation. We then calculated and plotted ALE main effect plots for the four predictors using
K = 100. The following R code generates the data, fits the neural network, and computes and
constructs the ALE plots:

R code for Example 1
Load relevant packages
library (ALEPlot)

library (nnet)

Generate some data and fit a neural network supervised learning model
n = 5000

x1l <-= runif(n, min = 0, max = 1)
x2 <= runif(n, min = 0, max = 1)
x3 <= runif(n, min = 0, max = 1)
x4 <— runif(n, min = 0, max = 1)

y = 4%x1 + 3.87xx272 + 2.97+exp (-5+10%xx3)/ (l+exp (-5+10%%x3))+ rnorm(n, 0, 1)
DAT <- data.frame(y, x1, x2, x3, x4)

nnet .DAT <- nnet(y~., data = DAT, linout = T, skip = F, size = 8,

decay = 0.1, maxit = 1000, trace = F)

Define the predictive function
vhat <- function (X.model, newdata) as.numeric (predict (X.model, newdata,
type = "raw"))

Calculate and plot the ALE main effects of x1, x2, x3, and x4
par (mfrow = c(2,2), mar = c(4,4,2,2) + 0.1)

ALE.l1 = ALEPlot (DAT[,2:5], nnet.DAT, pred.fun = vyhat, J = 1,

K = 100, NA.plot = TRUE)

ALE.2 = ALEPlot (DAT[,2:5], nnet.DAT, pred.fun = vyhat, J = 2,

K = 100, NA.plot = TRUE)

ALE.3 = ALEPlot (DAT[,2:5], nnet.DAT, pred.fun
K = 100, NA.plot = TRUE)

ALE.4 = ALEPlot (DAT[,2:5], nnet.DAT, pred.fun = vyhat, J = 4,
K = 100, NA.plot = TRUE)

vhat, J = 3,

Manually plot the ALE main effects on the same scale for easier
comparison of the relative importance of the four predictor variables
plot (ALE.1S$x.values, ALE.1$f.values, type="1", xlab="x1",

ylab="ALE_main_x1", xlim = c(0,1), ylim = c(-2,2), main = "(a)")
plot (ALE.2Sx.values, ALE.2$f.values, type="1", xlab="x2",
ylab="ALE_main_x2", xlim = c(0,1), ylim = c(-2,2), main = "(b)")
plot (ALE.3$x.values, ALE.3S$f.values, type="1", xlab="x3",
ylab="ALE_main_x3", xlim = c¢(0,1), ylim = c(-2,2), main = "(c)")
plot (ALE.4S$x.values, ALE.4$f.values, type="1", xlab="x4",
ylab="ALE_main_x4", xlim = c(0,1), ylim = c(-2,2), main = "(d)")

Note that the first argument of the ALEP1ot function is the data frame of predictor variables
(excluding the response variables) to which the supervised learning model is fit. The second
argument of ALEPlot is the supervised learning model object. The argument pred.fun is a
user-supplied function that will be used to predict the response for the supervised learning
model object. For most supervised learning model objects, pred.fun can simply call the predict
function that was written as part of that modeling object package, assuming the package contains
a predict function. The argument J indicates whether the ALE main effect (J = 1) or the ALE
second-order effect (J = 2) estimate (to be discussed in the next section) will be plotted. K
specifies the number of intervals into which the space of the predictor of interest is divided.
ALEPlot has three output values: K, x.values, and f.values. In particular, f.values stores the
ALEPIlot estimates evaluated at the break points of the predictor space. We used these values in

ALE main_x1

ALE main x3

the manual plotting commands. More details of the function arguments and output values can
be found in the package help file.

(a) (b)
o~ o~
)
=
=
= — g = —
o
=
=
T T
o~ o~
I I
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x1 x2
(c) (d)
o~ — o~ —
=
.E‘
o e o
o
=
=
T M
o~ o~
I 1
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x3 x4

Figure 3: ALE main effect plots for the fitted neural network model in Example 1: (a) fl, ALe(r1)
vs. x1, (b) faoarLe(x2) vs. x2, (¢) f3are(xs) vs. x3, and (d) fiarg(xa) vs. x4. The four
estimated ALE main effects accurately capture the correct linear, quadratic, and sigmoidal rela-
tionships, respectively, for x1, 22, and x3. Moreover, f47 Are(zq) in panel (d) correctly indicates
that x4 has no effect on Y.

Figure 3 shows the ALE main effect plots for x1, x2, 3, and z4 for Example 1. The estimates
of fiare(z1), fe,are(x2), and f3 app(z3) clearly capture the correct linear, quadratic, and
sigmoidal relationships quite well. Notice also that the estimate of f4 arp(x4) in panel (d) is
almost zero, which agrees with the fact that Y did not depend at all on Xy in the model for
generating the data, so that there is no functional dependence of Y on Xy4. In this manner,
ALE plots can be used to visually assess variable importance (main effect plots for main effect
importance).

3 Estimation and Interpretation of ALE Second-Order Effects
with the ALEP1lot Package

The ALE second-order effect of the predictors {x;, z;}, {j,1} C {1,...,d} is defined as

2
finyave(xj, x) / / Bl e a))((l’é}(l)|Xj = zj, X1 = a)dzjdz — gj(z;) — gi(z1) —c2 (7)
Here, zp; and zp; are approximate lower bounds of X; and Xj, respectively. The functions
gj(z;) and g;(z;) (functions of the single variables x; and x;, respectively) and the constant ¢y
are calculated so that fy; n arg(7;,7;) is ‘doubly centered’ in the sense that fi; ;) arr(X;, X;) has
a mean of zero with respect to the marginal distribution of { X}, X;}, and the ALE main effects of
z; and x; on fg;ny are(Xj, X;) are both zero. A contour plot of an estimate of f; 1 are(zj, 1)
vs. {zj,z;} shows the interaction effect between the two predictors.

. k_Ng in(43)

Zo_\, Z1y 2 3 24 Zsj

N;(1) N2 N@B) N@#) N5

Figure 4: Illustration of the notation used in computing the ALE second-order effect estimator
f{j,l}yALE(xj,wl) for K = 5. The ranges of {z;; : i =1,2,..,n} and {z;; : i = 1,2, ...,n} are
each partitioned into 5 intervals, and their Cartesian product forms the grid of rectangular cells
{Ngay(k,m) = Nj(k) x Ny (m) : k=1,2,...,5;m = 1,2,...,5}. The cell with bold borders is the
region Ny;y(4,3). The second-order finite differences in Eq.(8) for (k,m) = (4,3) are calculated
across the corners of this cell. In the inner summation of Eq. (8), these differences are then
averaged over the ng;y(4,3) = 2 observations in region Ny;;(4,3).

An estimate of the ALE second-order effect of { X, X;} at any (z;, ;) € (205, 2K ;] X (20,1, 2K,1]
is
kj(z;) ki(21)
Fiinyape(zj,) e (hm) > (L (ks 2mts Tipgiy) — F(2r—1> Zm.ts Tin gy
=t k), i, (5,3 €N 513 (k)

= [f Grgo 2m—1 iz gGy) — f(2e—15s 2m—10: Ty)] — G5(25) — Gu(@) —
(8)

, where the functions gj(x;), §i(x;) and the constant ¢y are calculated to ‘doubly center’ the
ALE second order effect estimate, and the notation is as follows. As illustrated in Figure 4, we

partition the {X;, X;} space into a grid of K2 rectangular cells {Ng(k,m) = Nj(k) x Ni(m) :
k=1,2,..,K;m=1,2,..., K} obtained as the cross product of the intervals in the individual
one-dimensional partitions defined in Section 2. Let ny;;(k,m) denote the number of training
observations that fall into cell Ny;;3(k,m), so that Zszl Zi:l ngjiy(k,m) = n. For a specific
point (z;,z;) in the {X;, X;} space, let kj(x;) and k;(x;) denote the indices of the intervals into
which z; and x; fall, respectively, i.e., (zj, 1) € Nyjiy(kj(x5), ki(21)).

Example 2. We now modify Example 1 by adding an interaction term to the true model and
demonstrate the calculation and visualization ALE second-order interaction effects using the
ALEPlot package. Again, X = {X;, X9, X3, X4} are four independent predictor variables with
each X; ~ U[0,1]. Now, the true response is generated as

exp(—5 + 10zx3)

Y =4 3.87x9% + 2.97
et Tt 1+ exp(—5+ 10x3)

+13.86(z1 — 0.5)(z2 — 0.5) + e,

where ¢ ~ N(0,1), and the coefficients 4, 3.87, 2.97, and 13.86 were chosen so that the four
terms have approximately the same variance. We generated n = 5000 observations from the
preceding model and fit a neural network model using the nnet package by Venables and Ripley
(2002) with 6 nodes in the single hidden layer, a linear output activation function, and a decay
parameter of 0.1, which were approximately optimal according to 10-fold cross-validation. We
use K = 500 for the main effect plots and K = 100 for the second-order effect plots and used
the following R code to generate them:

R code for Example 2
Load relevant packages
library (ALEPlot)

library (nnet)

Generate some data and fit a neural network supervised learning model
n = 5000

x1 <= runif(n, min = 0, max = 1)
x2 <= runif(n, min = 0, max = 1)
x3 <= runif(n, min = 0, max = 1)
x4 <- runif(n, min = 0, max = 1)

’
y = 4%xx1 + 3.87xx272 + 2.97+exp (-5+10%xx3)/ (l+exp (-5+10xx3))+
13.86* (x1-0.5) % (x2-0.5)+ rnorm(n, 0, 1)
DAT <- data.frame(y, x1, x2, x3, x4)
nnet .DAT <- nnet(y~., data = DAT, linout = T, skip = F, size = 6,
decay = 0.1, maxit = 1000, trace = F)

Define the predictive function
vhat <- function (X.model, newdata) as.numeric (predict (X.model, newdata,
type = "raw"))

Calculate and plot the ALE main effects of x1, x2, x3, and x4
ALE.l1 = ALEPlot (DAT[,2:5], nnet.DAT, pred.fun = yhat, J =1, K = 500,
NA.plot = TRUE)

ALE.2 = ALEPlot (DAT[,2:5], nnet.DAT, pred.fun = yhat, J = 2, K
NA.plot = TRUE)

ALE.3 = ALEPlot (DAT[,2:5], nnet.DAT, pred.fun = yhat, J = 3, K = 500,
NA.plot = TRUE)

ALE.4 = ALEPlot (DAT[,2:5], nnet.DAT, pred.fun = yhat, J = 4, K = 500,
NA.plot = TRUE)

500,

Calculate and plot the ALE second-order effects of {x1, x2} and {x1l, x4}
ALE.12 = ALEPlot (DAT[,2:5], nnet.DAT, pred.fun = yhat, J = c(1,2), K = 100,
NA.plot = TRUE)
ALE.14 = ALEPlot (DAT[,2:5], nnet.DAT, pred.fun = yhat, J = c(1,4), K = 100,
NA.plot = TRUE)

Manually plot the ALE main effects on the same scale for easier comparison
of the relative importance of the four predictor variables

par (mfrow = c(3,2))

plot (ALE.1$x.values, ALE.1S$f.values, type="1", xlab="x1",

ylab="ALE_main_x1", xlim = c(0,1), ylim = c(-2,2), main = "(a)")

plot (ALE.2Sx.values, ALE.2$f.values, type="1", xlab="x2",

ylab="ALE_main_x2", xlim = c(0,1), ylim = c(-2,2), main = "(b)")

plot (ALE.3S$x.values, ALE.3$f.values, type="1", xlab="x3",

ylab="ALE_main_x3", xlim = c(0,1), ylim = c(-2,2), main = "(c)")

plot (ALE.4$x.values, ALE.4S$f.values, type="1", xlab="x4",

ylab="ALE_main_x4", xlim = c(0,1), ylim = c(-2,2), main = "(d)")

Manually plot the ALE second-order effects of {x1l, x2} and {x1l, x4}

image (ALE.12S$x.values[[1]], ALE.12S$x.values[[2]], ALE.12S$f.values, xlab = "x1",
ylab = "x2", main = "(e)")

contour (ALE.12$x.values([[1]], ALE.12S$x.values[[2]], ALE.12$f.values, add=TRUE,

drawlabels=TRUE)

image (ALE.14$x.values[[1]], ALE.l4$x.values[[2]], ALE.14$f.values, xlab = "x1",
ylab = "x4", main = "(f)")

contour (ALE.14$x.values[[1]], ALE.1l4Sx.values[[2]], ALE.14S5f.values, add=TRUE,

drawlabels=TRUE)

Figures 5(a) - (d) show the ALE main effect plots of z1 - z4. Figures 5(e) and (f) show the
ALE second-order effect plots for {z1,z2} and {z1, x4} respectively. From Figures 5(a) - (d), we
see that with the addition of the interaction term, the ALE main effect plots still capture the
correct linear, quadratic, sigmoidal, and constant (zero) relationships very well. From Figures
5(e) and 5(f), we see that the interaction between z and xs is significant while the interaction
between x; and x4 is almost negligible. Specifically, the plot of f{1,2},ALE(x17 x9) looks similar

to the contour plot of a hyperbolic parabola, and the plot of f{174}7ALE(a:1,x4) is close to the
contour plot of the zero function (taking into account the scale of the contour values shown in
the figures). These results agree with the fact that the true model has strong interaction between
x1 and 9 and no interaction between x1 and x4.

Regarding interpretation of the {x1,z2} interaction effect, consider the dependence of f on
x9 when x7 is fixed. From Figure 5(e), when we fix (say) x1 = 0.2, increasing xo decreases
f{172}7ALE(l’]_,$2), and when we fix (say) x; = 0.8, increasing xg increases f{1,2}7ALE(£Ul,SU2).
Thus, Figure 5(e) indicates that {1, x2} have positive (reinforcement) interaction. Users should
keep in mind that, by definition, ALE second-order effects have zero ALE main effects, since the
latter is subtracted from the former when we do the ‘centering’. Hence, in order to understand the
dependence of f on x5 for different fixed values of x1, one should look at the function f27 ALe(x2)+
f{l,z},ALE(xL x9) versus g, i.e., the ALE main effect of x5 added to the ALE interaction effect
of {x1,z2}. For fixed z1 = 0.2, the true effect of 29 on Y is a milder 3.87x52 —4.16x2 + constant;
and for fixed x7 = 0.8, the true effect of zo on Y is a stronger 3.87x52 +4.1625 4 constant, which
agrees quite closely with the ALE estimate f2 Are(xa) + f{l 2y,4LE(71, 72) with 71 = 0.2 and
x1 = 0.8 plugged in.

() (b)

ALE_main_x1
0
1
ALE_main_x2
0

-1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(c) (d)

ALE_main_x3

0

1
ALE_main_x4

-1 0

-2
1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

x2

x1 x1

Figure 5: ALE main effect plots: (a) f1,ALE(331)A, (b) f2,aLE(22), (€) f3,A£,E($3)7 and (d)
fa,aLE(74) and ALE second-order effect plots: (e) fi12),are(71,72), and (f) fr14y,a06(z1,74)
for the fitted neural network model in Example 2. Figures 5(a) - (d) capture the correct linear,
quadratic, sigmoidal, and constant (zero) relationships for z; - x4 well. Figure 5(e) reveals
significant interaction between x1 and xo. Figure 5(f) shows that the interaction between x; and
x4 is negligible.

10

Apley (2016) discusses additional properties and characteristics of ALE effects. By using a
conditional expectation, as opposed to a marginal expectation, in the definitions (5) and (7) of
ALE effects, ALE plots avoid the extrapolation problem of PD plots depicted in Figure 1(a).
Moreover, by averaging the local effect (i.e., the partial derivative) rather than the function f
itself, ALE plots do not suffer from the OVB problem that renders M Plots of little use for un-
derstanding the effects of the individual predictors. In addition to overcoming the extrapolation
and OVB problems, ALE plots enjoy a type of additive unbiasedness property for dependent
or independent predictors and a multiplicative unbiasedness property for independent subsets
of predictors, just as PD plots do. ALE plots are also far less computationally expensive than
PD plots, and the computational expense does not depend on the choice of K. Finally, third-
and higher-order ALE interaction effects can be defined and estimated in a similar way as ALE
main effects and second-order interaction effects. However, the ALEPlot does not consider
them, because they are less prevalent and much more difficult to interpret than main effects and
second-order interaction effects. See Apley (2016) for details.

4 A More Complex Example with Real Data

We now walk through an example considered in Apley (2016), in which a binarized version of
household income (above or below a threshold) is predicted as a function of a number of other
demographic predictor variables. The data are a compilation of the 1994 US Census data from
the University of California Irvine Machine learning repository at

http://archive.ics.uci.edu/ml/datasets/Census-+Income.

Example 3. Income Data Example

To reproduce these results using the code below, readers should first obtain the ‘adult.data’
file from the above link and save it as a csv file. There are n = 30, 162 cases in the training data
set (after removing cases with missing data), and each case represents a person. The response
is the binary categorical variable indicating whether a person earned more than $50k income in
1994. The d = 12 predictor variables that we use below are: age (x1, numerical); working class
(x9, categorical with 8 categories); education level (x3, treated as numerical:1 = preschool, 2 =
1st-4th grade, 3 = 5th-6th grade, 4 = 7th-8th grade, 5 = 9th grade, 6 = 10th grade, 7 = 11th
grade, 8 = 12th grade, 9 = high school graduate, 10 = some college, 11 = vocational associates
degree, 12 = academic associates degree, 13 = bachelor’s degree, 14 = master’s degree, 15 =
professional degree, 16 = doctorate degree); marital status (x4, categorical with 7 categories);
occupation (x5, categorical with 13 categories); relationship status (zg, categorical with 6
categories); race (x7, categorical with 5 categories); sex (xg, categorical with 2 categories);
capital gains (zg, numerical); capital loss (x19, numerical); hours-per-week spent working (x11,
numerical); and native country (x12, categorical with 41 categories). Note that the code below
removes the original third and fourth predictors, which we do not use. We fit a boosted tree
using the R ghm package by Ridgeway and with contributions from others (2015) with
parameters shrinkage = 0.02 and interaction.depth = 3, for which the optimal number of trees
(determined via 10-fold cross-validation) was 6,000. As f(z) for constructing ALE plots, we
used the log-odds of the predicted probability that a person makes over $50k dollars from the
fitted boosted tree. Figure 6 shows the ALE main effect plots for the age, education level, and
hours-per-week predictors and the ALE second-order interaction plot f{1 11} arg(71,711) for
{age, hours-per-week}. We used K = 500 for the main effects plots and K = 50 for the
interaction plot. The following R code can be used to generate the plots:

11

R code for Example 3
Load relevant packages
library (ALEPlot)

library (gbm)

Read data and fit a boosted tree supervised learning model
data = read.csv("adult_data.csv", header = TRUE, strip.white = TRUE,

na.strings = "?")

data = na.omit (data)

gbm.data <- gbm(income==">50K" ~ ., data= datal,-c(3,4)1],
distribution = "bernoulli", n.trees=6000, shrinkage=0.02,

interaction.depth=3)

Define the predictive function; note the additional arguments for the
predict function in gbm

vhat <- function (X.model, newdata) as.numeric (predict (X.model, newdata,
n.trees = 6000, type="link"))

Calculate and plot the ALE main and interaction effects for x_1, x_3,
x_11, and {x_1, x_11}

par (mfrow = c(2,2), mar = c(4,4,2,2)+ 0.1)

ALE.l1=ALEPlot (datal[,-c(3,4,15)], gbm.data, pred.fun=yhat, J=1, K=500,
NA.plot = TRUE)

ALE.3=ALEPlot (datal[,-c(3,4,15)], gbm.data, pred.fun=yhat, J=3, K=500,
NA.plot = TRUE)

ALE.11=ALEPlot (data[,-c(3,4,15)], gbm.data, pred.fun=yhat, J=11, K=500,
NA.plot = TRUE)

ALE.landl1=ALEPlot (datal[,-c(3,4,15)], gbm.data, pred.fun=yhat, J=c(1,11),
K=50, NA.plot = FALSE)

Regarding interpretation of the results, the ALE main effects plots in Figure 6 have clear
interpretations. The probability of earning more than $50k (i) gradually increases with age
until it peaks around 50 years and then gradually declines; (ii) monotonically increases with
education level, with the largest jumps occurring when going from Associates to Bachelor’s,
from Bachelor’s to Master’s, and from Master’s to Ph.D./Professional degrees; and (iii)
monotonically increases with hours per week worked up until about 50 hours per week, with
the steepest increases between roughly 30 — 50 hours per week.

The ALE second-order {age, hours-per-week} interaction plot in Figure 6 also reveals an
interesting relationship. Consider the increased probability of earning more than $50k that is
associated with increasing hours-per-week from 35 to 80. From the interaction plot, the amount
that this probability increases depends on age. For 25-year-olds, the increase in probability
when going from 35 to 80 hours-per-week is larger than for 75-year-olds, because
f{1711}7ALE(x1, x11) increases by 0.3 units for 25-year-olds but decreases by 0.5 units for
75-year-olds when going from 35 to 80 hours-per-week. Perhaps this is because 75-year-olds
who work so many hours may be more compelled to do so for financial reasons than
25-year-olds (or perhaps there are other explanations).

A word of caution regarding interpreting the ALE interaction plots is again in order. By
definition, f{1711}7ALE(l'1, x11) has no 1 or 11 ALE main effects, because they are subtracted
from it. Thus, the fact that f{1711}7ALE($1, x11) decreases by 0.5 for 75-year-olds going from 35
to 80 hours-per-week does not imply that such an increase in hours-per-week is associated with
a decrease in the probability of a 75-year-old earning more than $50k. To gauge this, we must
look at whether fu’ALE(a:u) + f{LH}’ALE(?qB, x11) increases or decreases when going from
211 = 35 to 11 = 80 hours per week. From Figure 6 this still increases by about 0.6 units for

12

F1pc1)

f 1 1)

75-year-olds, so at any age, increasing hours per week worked is associated with an increase in
the probability of earning more than $50k.

(a) (b)

o
o
o
= _
= _
o
S .
>< (=}
>
|
k]
= -
T =
L=}
= o
— - = —
1 1
T T T T T T T
20 40 60 80 5 10 15
x_1 (x1)
©)
= 4
[
(==)
el
2
o
«©
o —_
S 7 e
=
e
>
o I
7o) 3
< . =
s — 0 am m. . I
=2
-
T T T T T T T T T T T T T
o 20 40 60 80 100 20 30 40 50 60 70 80 90
x_11 (x13) x_1 (x1)

Figure 6: For the income data example using the boosted tree log-odds as f(z), ALE main
effect plots for age, education level, and hours-per-week (top panels and bottom left panel) and
ALE second-order interaction plot for {age, hours-per-week} (bottom right panel). The black
rectangles in the interaction plot indicate empty cells, into which none of the training observations
fell.

5 Comparing ALE and PD Plots: An Example where PD Plots
break down

We have discussed the advantages of ALE plots throughout the vignette (i.e., they do not suffer
from the extrapolation or OVB problems and are computationally simpler than existing
visualization methods). In this section, we show an example where ALE plots are reliable,
while PD plots break down, because of the extrapolation problem.

Example 4. Simulated example with dependent predictors

13

Suppose X = {X1, Xy} follows a uniform distribution along the line xo = x; with
independent N(0,0.052) variables added to both predictors. The true response is generated as
Y = X; + X2 + € with € ~ N(0,0.12). We generated n = 200 observations from this model and
fit a neural network model using the nnet package by Venables and Ripley (2002) with 10
nodes in the single hidden layer, a linear output activation function, and a decay parameter of
0.0001. These parameters were again chosen as approximately optimal via multiple replicates
of 10-fold cross-validation. The following R code can be used to generate ALE and PD main
effects plots for z1 and xo :

R code for Example 4
Load relevant packages
library (ALEPlot)

library (nnet)

Generate some data and fit a neural network supervised learning model
n = 200

x <— runif(n, min = 0, max = 1)

x]1l <= x + rnorm(n, 0, 0.05)

x2 <= x + rnorm(n, 0, 0.05)

y = x1 + %272 + rnorm(n, 0, 0.1)

DAT = data.frame(y, x1, x2)

nnet .DAT <- nnet(y ~ ., data = DAT, linout = T, skip = F, size = 10,
decay = 0.0001, maxit = 1000, trace = F)

Define the predictive function®
vhat <- function (X.model, newdata) as.numeric (predict (X.model, newdata,
type= "raw"))

Calculate and plot the ALE and PD main effects of x1 and x2

par (mfrow = c(2,2), mar = c(4,4,2,2) + 0.1)

ALE.l1 = ALEPlot (DAT[,2:3], nnet.DAT, pred.fun = yhat, J =1, K = 50,
NA.plot = TRUE)

PD.1 = PDPlot (DAT[,2:3], nnet.DAT, pred.fun = yhat, J
ALE.2 = ALEPlot (DAT[,2:3], nnet.DAT, pred.fun = yhat, J =2, K = 50,
NA.plot = TRUE)

PD.2 = PDPlot (DATI[,2:3], nnet.DAT, pred.fun = yhat, J = 2, K = 50)

Il
=
~
=
Il
(€]
o

Manually plot the ALE main effects on the same scale for easier
comparison of the relative importance of the four predictor variables
We also plot the true linear and quadratic effects in black for reference
plot (ALE.1$x.values, ALE.l1S$f.values, type="1", xlab="x1",
ylab="ALE_main_x1", xlim = c(0,1), ylim = c(-1,1), col = "blue", main = "(a)")
curve(x - 0.5, from = 0, to = 1, add = TRUE)
plot (PD.1$x.values, PD.1$f.values, type="1", xlab="x2",
ylab="PD_x1", xlim = c(0,1), ylim = c(-1,1), col = "blue", main = "(b)")
curve(x - 0.5, from = 0, to = 1, add = TRUE)
plot (ALE.2$x.values, ALE.2S$f.values, type="1", xlab="x3",

ylab="ALE_main_x2", xlim = c(0,1), ylim = c(-1,1), col = "blue", main = "(c)")
curve (x*2 - (1/3+0.05"2), from = 0, to = 1, add = TRUE)
plot (PD.2$x.values, PD.2$f.values, type="1", xlab="x4",

ylab="PD_x2", xlim = c(0,1), ylim = c(-1,1), col = "blue", main = "(d)")
curve (x*2 - (1/3+0.05"2), from = 0, to = 1, add = TRUE)

The results for a typical replicate of the Example 4 experiment and above R code are shown in
Figure 7, from which we see that the ALE main effects (plotted in blue) of 21 and xo (left
panels) are much closer to the true linear and quadratic effects (plotted in black) than are the
PD main effects (right panels). The reason for the poor accuracy of the PD plots was
illustrated in Figure 1(a). Namely, the PD plot requires extrapolation of f far outside the
envelope of the {1, x2} training data, in which regions the extrapolated f is very inaccurate.

14

(a) (b)
= =
w0)
=3 =3
‘;I
= —
‘© o > (=]
EI =3 o =
w o
o}
<<
w2 w2
(=13 (=13
T T
= <
N N
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x1 x2
() (d)
= =
w0)
=3 =3
N
=
Cl N
z <= I
EI = o =
w o
—
=
w2 w2
(=4 (=4
T T
= =
T T
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 7: Comparison of (a) fi are(z1), (b) fi,pp(x1), (¢) f2,aLe(x2), and (d) fo pp(x2) for
neural network models fitted over one realization of the Example 4 data. In each panel, the black
curve is the true effect function (linear for X7 and quadratic for X5), and the blue curves are
the estimated effect functions for ALE plots (left panels) and PD plots (right panels).

The Example 4 results shown in Figure 7 vary each time the experiment is repeated. We
conducted 50 Monte-Carlo replicates of the Example 4 experiment, where on each replicate a
different set of n = 200 observations are generated from the same distribution and a new neural
network model with the same tuning parameters is fit. The results for all 50 replicates are
overlaid in Figure 8. Again, the ALE main effects plots (left panels) are far closer to the true
linear and quadratic effects for X; and X, respectively, than are the PD plots (right panels).

15

ﬁZ,ALE (x2)

fr,aLE (x1)

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

| ()
] I |] I]
0.0 0.2 0.4 0.6 0.8 1.0
X1
(c)
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X2

0.5 1.0

fi,pp (x1)
0.0

0.5

-1.0

1.0

0.5

f 2,PD (x2)
0.0

-0.5

-1.0

1 (b)

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 8: Comparison of (a) fiare(x1), (b) fi,pp(x1), (¢) f2,aLe(22), and (d) fo pp(x2) for
neural network models fitted over 50 Monte Carlo replicates of the Example 1 data. In each
panel, the black curve is the true effect function (linear for X; and quadratic for X3), and the
gray curves are the estimated effect functions over the 50 Monte Carlo replicates.

16

References

D. W. Apley. Visualizing the effects of predictor variables in black box supervised learning
models. submitted for publication, 2016.

J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29(5):1189-1232, 2001.

G. Ridgeway and with contributions from others. gbm: Generalized boosted regression models.
r package version 2.1.1, 2015. URL http://CRAN.R-project.org/package=gbm.

W. N. Venables and B. D Ripley. Modern Applied Statistics with S. Fourth Edition. Springer,
New York, 2002. ISBN 0-387-95457-0.

17

