
Package ‘AssocBin’
November 23, 2023

Version 0.1-0

Encoding UTF-8

Title Measuring Association with Recursive Binning

Description An iterative implementation of a recursive binary partitioning algorithm to measure pair-
wise dependence with a modular design that allows user specification of the split-
ting logic and stop criteria. Helper functions provide suggested versions of both and support vi-
sualization and the computation of summary statistics on final binnings. For a complete descrip-
tion of the functionality and algorithm, see Salahub and Oldford (2023) <arxiv:2311.08561>.

Maintainer Chris Salahub <chris.salahub@uwaterloo.ca>

Depends R (>= 4.3.0)

Imports
Suggests knitr, rmarkdown

Enhances
License GPL (>= 3)

NeedsCompilation no

Repository CRAN

VignetteBuilder knitr

RoxygenNote 7.2.3

Author Chris Salahub [aut, cre] (<https://orcid.org/0000-0003-3770-6798>)

Date/Publication 2023-11-23 12:50:05 UTC

R topics documented:
binChi . 2
binner . 3
chiScores . 4
depthFill . 5
halfCutTie . 7
halfSplit . 8
makeCriteria . 9

1

https://arxiv.org/abs/2311.08561
https://orcid.org/0000-0003-3770-6798

2 binChi

maxScoreSplit . 9
plotBinning . 10
sp500pseudo . 11
splitX . 12
stopper . 13
uniMaxScoreSplit . 14

Index 15

binChi Statistics for bins

Description

These functions compute statistics based on observed and expected counts for a list of bins.

Usage

binChi(bins, agg = sum)

binMI(bins, agg = sum)

binAbsDif(bins, agg = sum)

Arguments

bins a list of bins, each a list with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements
‘x‘ and ‘y‘), ‘expn‘, ‘n‘

agg function which is aggregates the individual statistics computed over each bin

Details

Binstatistics

Three functions are provided by default, ‘binChi‘ computes the chi-squared statistic by taking the
squared difference between observed and expected counts and dividing this by the expected counts.
‘binMi‘ computes the mutual information for each bin using the observed and expected counts.
Finally, ‘binAbsDif‘ computes the absolute difference between observed and expected counts. Each
function first computes a value on every bin independently and stores all these values in memory
before using the function provided in the optional argument ‘agg‘ to aggregate these values.

Value

A list with elements ‘residuals‘ and ‘stat‘ reporting the individual statistic values (possibly trans-
formed) and the aggegrated statistic value.

binner 3

Functions

• binChi(): Chi-squared statistic

• binMI(): Mutual information

• binAbsDif(): Absolute difference between observed and expected

Author(s)

Chris Salahub

Examples

binList1 <- list(list(x = c(1,2), y = c(3,1), depth = 1, n = 2,
expn = 2),

list(x = c(3,4), y = c(2,4), depth = 1, n = 2,
expn = 2))

binList2 <- list(list(x = c(1,2), y = c(3,1), depth = 6, n = 2,
expn = 4),

list(x = c(), y = c(), depth = 1, n = 0, expn = 1))
binChi(binList1)
binChi(binList2)
binMI(binList1)
binMI(binList2)
binAbsDif(binList2)

binner Wrapper for recursive binning

Description

‘binner‘ is an iterative implementation of a recursive binary partitioning algorithm which accepts
the splitting and stopping functions that guide partitioning as arguments.

Usage

binner(x, y, stopper, splitter, init = halfSplit)

Arguments

x numeric vector of the first variable to be binned

y numeric vector of the second variable to be binned

stopper function which accepts a list with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, and ‘n‘ and
returns a logical indicating whether a split should occur for the bin defined by
that list

splitter function which accepts a list of lists with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, and
‘n‘ and returns a list where each element is a list of two corresponding to a split
of the bin at that position in the original list

init function like ‘splitter‘ applied to the sole first bin

4 chiScores

Details

‘binner‘ creates a two-dimensional histogram of the sample space of ‘x‘ and ‘y‘ by recursively
splitting partitions of the data using ‘splitter‘ until ‘stopper‘ indicates that all partitions are not to be
split. An optional argument ‘init‘ gives the function applied to the first bin containing all points to
initialize the binning algorithm.

Value

A list of lists each with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, and ‘n‘.

Author(s)

Chris Salahub

Examples

necessary set up
crits <- makeCriteria(depth >= 4, n < 10, expn <= 5)
stopFn <- function(bns) stopper(bns, crits)
spltFn <- function(bn) maxScoreSplit(bn, chiScores)
generate data
x <- sample(1:100)
y <- sample(1:100)
run binner
bins <- binner(x, y, stopper = stopFn, splitter = spltFn)

chiScores Scoring functions to choose splits

Description

These functions define scores to evaluate candidate splits along a single margin within partition.

Usage

chiScores(vals, expn, minExp = 0)

miScores(vals, expn, minExp = 0)

randScores(vals, expn, minExp = 0)

Arguments

vals numeric vector candidate splits and bounds

expn the expected number of points in the bin

minExp the minimum number of points allowed in a bin

depthFill 5

Details

Scorings

Each of these functions accepts ‘vals‘, an ordered numeric vector containing the candidate splits
within a bin and the bin bounds all in increasing order. To restrict splitting, they also accept ‘expn‘
and ‘minExp‘, which provide the expected count within the split and minimum value of this count,
respectively. Any split which produces an expected value less than ‘minExp‘ (assuming a uniform
density within the bin) is given a score of zero.

Value

A vector of scores.

Functions

• chiScores(): A chi-squared statistic score

• miScores(): A mutual information score

• randScores(): A random score for random splitting

Author(s)

Chris Salahub

Examples

vals <- c(2, 5, 12, 16, 19)
restricting the minExp changes output
chiScores(vals, 4, minExp = 0)
chiScores(vals, 4, minExp = 2)
same for the miScores
miScores(vals, 4, minExp = 0)
miScores(vals, 4, minExp = 2)
random scoring produces different output every time
randScores(vals, 4, minExp = 0)
randScores(vals, 4, minExp = 0)

depthFill Generate fills encoding bin features

Description

These functions all accept a list of bins and return a vector of colours of the same length that encode
some feature of the bins.

6 depthFill

Usage

depthFill(bins, colrng = c("floralwhite", "firebrick"))

residualFill(
bins,
resFun = binChi,
maxRes,
colrng = c("steelblue", "floralwhite", "firebrick"),
breaks = NA,
nbr = 50

)

Arguments

bins list of bins to be visualized

colrng hue range to be passed to ‘colorRampPalette‘ to generate the final hue scale

resFun function which returns a result with a name element ‘residuals‘ that is a numeric
vector of the same length as ‘bins‘

maxRes numeric maximum value of the residuals to maintain the correct origin, taken to
be the maximum observed residual if not provided

breaks numeric vector of breakpoints to control hues

nbr number of breakpoints for automatic breakpoint generation if ‘breaks‘ is not
provided

Details

Shadings

Two functions are provided by default: one which generates a fill based on bin depth and the other
based on a residual function applied to each bin.

Value

A vector of colours the same length as ‘bins‘.

Functions

• depthFill(): Fill by depth

• residualFill(): Fill by residual values

Author(s)

Chris Salahub

halfCutTie 7

Examples

bin <- list(x = 1:10, y = sample(1:10),
bnds = list(x = c(0, 10), y = c(0, 10)),
expn = 10, n = 10, depth = 0)

bin2 <- halfSplit(bin, "x")
bin3 <- unlist(lapply(bin2, maxScoreSplit,

scorer = chiScores),
recursive = FALSE)

plotBinning(bin3, fill = depthFill(bin3)) # all the same depth
plotBinning(bin3, fill = residualFill(bin3)) # diff resids

halfCutTie Halve continuously to break ties

Description

This function halves a bin based on the midpoint of the bounds along whichever margin produces
the larger score.

Usage

halfCutTie(bin, xscore, yscore)

Arguments

bin a bin to be split with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements ‘x‘ and
‘y‘), ‘expn‘, ‘n‘

xscore numeric value giving the score for all splits along x

yscore numeric value giving the score for all splits along y

Details

The goal of this function is to break ties within bin splitting in a way which prevents very small or
lopsided bins from forming, a common problem with the ‘halfSplit‘ function

Value

A list of two bins resulting from the split of ‘bin‘ in half along the margin corresponding to the
larger score.

Author(s)

Chris Salahub

8 halfSplit

Examples

bin <- list(x = 1:10, y = sample(1:10),
bnds = list(x = c(0, 10), y = c(0, 10)),
expn = 10, n = 10, depth = 0)

halfCutTie(bin, 1, 2) # splits on y
halfCutTie(bin, 2, 1) # splits on x
halfCutTie(bin, 1, 1) # ties are random

halfSplit Halve at an observed point

Description

This function halves a bin under the restriction that splits can only occur at observation coordinates.

Usage

halfSplit(bin, margin = "x")

Arguments

bin a bin to be split with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements ‘x‘ and
‘y‘), ‘expn‘, ‘n‘

margin string, one of ‘x‘ or ‘y‘

Details

Given a bin and a margin, this function splits the bin so half the points are above the new split point
and half are below.

Value

A list of two bins resulting from the split of ‘bin‘ in half along the specified margin

Author(s)

Chris Salahub

Examples

bin <- list(x = 1:10, y = sample(1:10),
bnds = list(x = c(0, 10), y = c(0, 10)),
expn = 10, n = 10, depth = 0)

halfSplit(bin)
halfSplit(bin, margin = "y")

makeCriteria 9

makeCriteria Make stop crteria

Description

Capture a sequence of logical statements and append them into a single expression.

Usage

makeCriteria(...)

Arguments

... an arbitrary number of expressions which evaluate to logicals

Details

This function, along with ‘stopper‘ dictates the stop behaviour of recursive binning. It accepts an
arbitrary number of arguments, each a logical statement, and appends them all into a string separated
by the pipe character.

Value

A string which appends all expressions together.

Author(s)

Chris Salahub

Examples

makeCriteria(depth >= 5, n < 1)

maxScoreSplit Bivariate score maximizing splitting

Description

A function which splits a bin based on the location maximizing a score function.

Usage

maxScoreSplit(bin, scorer, ties = halfCutTie, pickMax = which.max, ...)

10 plotBinning

Arguments

bin a bin to be split with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements ‘x‘ and
‘y‘), ‘expn‘, ‘n‘

scorer function which accepts a numeric vector of potential split coordinates and the
bounds of ‘bin‘ and returns a numeric vector of scores for each

ties function which is called to break ties when all splits generate the same score

pickMax function which accepts a list of scores and returns the element of the largest
score according to some rule

... optional additional arguments to ‘scorer‘

Details

This function serves as a wrapper which manages the interaction of a score function, marginal
splitting functions, tie breaking function, and a maximum selection function to split a bin at the
observation coordinate which maximizes the score function.

Value

A list of two bins resulting from the split of ‘bin‘ along the corresponding margin at the maximum
location

Author(s)

Chris Salahub

Examples

bin <- list(x = 1:10, y = sample(1:10),
bnds = list(x = c(0, 10), y = c(0, 10)),
expn = 10, n = 10, depth = 0)

maxScoreSplit(bin, chiScores)
maxScoreSplit(bin, miScores) # pretty similar for both
maxScoreSplit(bin, randScores)
maxScoreSplit(bin, randScores) # different every time

plotBinning Plot a binning using shaded rectangles

Description

Use a binning and vector of fill colours to visualize the sample space of pairwise data.

Usage

plotBinning(bins, fill, add = FALSE, xlab = "x", ylab = "y", ...)

sp500pseudo 11

Arguments

bins list of lists each with a named elements ‘x‘, ‘y‘, and ‘bnds‘, the last of which is
a list having named elements ‘x‘ and ‘y‘

fill vector of values which can be interpreted as colours of the same length as ‘bins‘
add logical, should the plot of bins be added to the current plot area?
xlab string, the label to be placed on the x axis
ylab string, the label to be placed on the y axis
... optional additional arguments to be passed to ‘plot‘, ‘points‘

Details

‘plotBinning‘ plots each bin within a list of bins with custom shading to communicate large residu-
als, the depth of bins, or highlight particular bins

Value

A list of lists each with elements ‘x‘, ‘y‘, ‘bnds‘, ‘expn‘, and ‘n‘.

Author(s)

Chris Salahub

Examples

bin <- list(x = 1:10, y = sample(1:10),
bnds = list(x = c(0, 10), y = c(0, 10)),
expn = 10, n = 10, depth = 0)

bin2 <- halfSplit(bin, "x")
bin3 <- unlist(lapply(bin2, maxScoreSplit, scorer = chiScores),

recursive = FALSE)
plotBinning(bin3)

sp500pseudo De-Garched S&P 500 returns

Description

This data uses code from the ’zenplots’ package to process S&P 500 consituent stock returns into
uniform pseudo-observations for measuring association.

Usage

data(sp500pseudo)

Format

A matrix with 755 rows and 461 columns, the rows correspond to dates between 2007 and 2009 and
the columns correspond to the different S&P 500 constituent stocks.

12 splitX

splitX Helper functions for marginal splitting

Description

These functions are helpers to safely split bins along X or Y.

Usage

splitX(bin, bd, above, below)

splitY(bin, bd, above, below)

Arguments

bin a bin to be split with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements ‘x‘ and
‘y‘), ‘expn‘, ‘n‘

bd numeric split point within the bin bounds

above indices of ‘x‘ and ‘y‘ points in the bin above ‘bd‘

below indices of ‘x‘ and ‘y‘ points in the bin below ‘bd‘

Details

These unexported functions have been defined primarily to clean up other code, but could be
changed to obtain different core functionality.

Value

A list of two bins resulting from the split of ‘bin‘ at ‘bds‘.

Functions

• splitX(): Splitting on x

• splitY(): Splitting on y

Author(s)

Chris Salahub

stopper 13

stopper Check bins against stop criteria

Description

Evaluate the stop ‘criteria‘ for each bin in ‘binList‘

Usage

stopper(binList, criteria)

Arguments

binList a list of bins, each a list which can be cast as an environment for evaluation

criteria string of logical expressions separated by pipes to be evaluated within each bin
of ‘binList‘

Details

This function makes use of R’s lexical scoping to evaluate ‘criteria‘ (a string), within each bin of
‘binList‘.

Value

A logical vector of the same length as ‘binList‘.

Author(s)

Chris Salahub

Examples

crits <- makeCriteria(depth >= 5, n < 1)
binList1 <- list(list(x = c(1,2), y = c(3,1), depth = 1, n = 2),

list(x = c(3,4), y = c(2,4), depth = 1, n = 2))
binList2 <- list(list(x = c(1,2), y = c(3,1), depth = 6, n = 2),

list(x = c(), y = c(), depth = 1, n = 0))
stopper(binList1, crits)
stopper(binList2, crits)

14 uniMaxScoreSplit

uniMaxScoreSplit Univariate score maximizing splitting

Description

A function which splits a bin based on the location maximizing a score function.

Usage

uniMaxScoreSplit(bin, scorer = diff, pickMax = which.max, ...)

Arguments

bin a bin to be split with elements ‘x‘, ‘y‘, ‘depth‘, ‘bnds‘ (list with elements ‘x‘ and
‘y‘), ‘expn‘, ‘n‘

scorer function which accepts a numeric vector of potential split coordinates and the
bounds of ‘bin‘ and returns a numeric vector of scores for each

pickMax function which accepts a list of scores and returns the element of the largest
score according to some rule

... optional additional arguments to ‘scorer‘

Details

This function is the univariate version of ‘maxScoreSplit‘ and so is considerably simpler. It assumes
the variable to be split is named ‘x‘ in the bin, and the other variable is to remain unsplit.

Value

A list of two bins resulting from the split of ‘bin‘ at the maximum split location along x

Author(s)

Chris Salahub

Index

∗ datasets
sp500pseudo, 11

binAbsDif (binChi), 2
binChi, 2
binMI (binChi), 2
binner, 3

chiScores, 4

depthFill, 5

halfCutTie, 7
halfSplit, 8

makeCriteria, 9
maxScoreSplit, 9
miScores (chiScores), 4

plotBinning, 10

randScores (chiScores), 4
residualFill (depthFill), 5

sp500pseudo, 11
splitX, 12
splitY (splitX), 12
stopper, 13

uniMaxScoreSplit, 14

15

	binChi
	binner
	chiScores
	depthFill
	halfCutTie
	halfSplit
	makeCriteria
	maxScoreSplit
	plotBinning
	sp500pseudo
	splitX
	stopper
	uniMaxScoreSplit
	Index

