Package 'Bodi' | October 12, 2022 | |--| | Title Boosting Diversity in Regression Ensembles | | Version 0.1.0 | | Description A gradient boosting-based algorithm by incorporating a diversity term to guide the gradient boosting iterations, see Bourel, Cugliari, Goude, Poggi (2021) https://hal.archives-ouvertes.fr/hal-03041309/ >. | | License MIT + file LICENSE | | Encoding UTF-8 | | Imports mgcv, ranger, rpart, gbm, opera | | RoxygenNote 7.1.2 | | NeedsCompilation no | | Maintainer Yannig Goude <yannig.goude@edf.fr></yannig.goude@edf.fr> | | Author Yannig Goude [aut, cre] (https://orcid.org/0000-0003-2028-5536), Mathias Bourel [aut] (https://orcid.org/0000-0002-7472-7179), Jairo Cugliari [aut] (https://orcid.org/0000-0001-6779-0084), Jean-Michel Poggi [aut] (https://orcid.org/0000-0002-8222-1653) | | Repository CRAN | | Date/Publication 2022-03-23 12:40:02 UTC | | R topics documented: | | Bodi-package | | Index | 2 boosting_diversity Bodi-package Bodi: Boosting Diversity Algorithm ## Description We provide an implementation of the boosting diversity algorithm. This is a gradient boosting-based algorithm by incorporating a diversity term to guide the gradient boosting iterations. The idea is to trade off some individual optimality for global enhancement. The improvement is obtained with progressively generated predictors by boosting diversity. See Borel et al. (2021) https://hal.archives-ouvertes.fr/hal-03041309v1> ## Author(s) Yannig Goude [aut, cre], Mathias Bourel [aut], Jairo Cugliari [aut], Jean-Michel Poggi [aut] Mantainer: Yannig Goude <yannig.goude@edf.fr> #### References • Mathias Bourel, Jairo Cugliari, Yannig Goude, Jean-Michel Poggi. Boosting Diversity in Regression Ensembles. https://hal.archives-ouvertes.fr/hal-03041309v1 (2021). boosting_diversity Diversity Boosting Algorithm ## **Description** Train a set of initial learners by promoting diversity among them. For this, a gradient descent strategy is adopted where a specialized loss function induces diversity which yields on a reduction of the mean-square-error of the aggregated learner. ## Usage ``` boosting_diversity(target, cov, data0, data1, sample_size = 0.5, grad_step = 1, diversity_weight = 1, Nstep = 10, model = "gam", sampling = "random", Nblock = 10, ``` boosting_diversity 3 ``` aggregation_type = "uniform", param = list(), theorical_dw = FALSE, model_list = NULL, w_list = NULL, param_list = NULL, cov_list = NULL ``` ## Arguments target name of the target variable cov the model equation, a character string provided in the formula syntax. For example, for a linear model including covariates \$X_1\$ and \$X_2\$ it will be "X1+X2" and for a GAM with smooth effects it will be "s(X1)+s(X2)" data0 the learning set data1 the test set sample_size the size of the bootstrap sample as a proportion of the learning set size. sam- ple_size=0.5 means that the resamples are of size n/2 where n is the number of rows of data0. grad_step step of the gradient descent diversity_weight the weight of the diversity encouraging penalty (kappa in the paper) Nstep the number of iterations of the diversity boosting algorithm (\$N\$ in the paper) model the type of base learner used in the algorithm if using a single base learner (model_list=NULL). Currently it could be either "gam" for an additive model, "rf" for a random forest, ""gbm" for gradient boosting machines, "rpart" for single CART trees. sampling the type of sampling procedure used in the resampling step. Could be either "random" for uniform random sampling with replacement or "blocks" for uniform sampling with replacement of blocks of consecutive data points. Default is "random". Nblock number of blocks for the block sampling. Equal to 10 by default. aggregation_type type of aggregation used for the ensemble method, default is uniform weights but it could be also "MLpol" an aggregation algorithm from the opera package param a list containing the parameters of the model chosen. It could be e.g. the number of trees for "rf", the depth of the tree for "rpart"... theorical_dw set to TRUE if one want to use the theoretical upper bound of the diversity weight kappa model_list a list of model among the possible ones (see the description of model argument). In that case the week learner is sample at each step in the list. "Still "experimen- tal", be careful. w_list the prior weights of each model in the model_list param_list list of parameters of each model in the model_list cov_list list of covariates of each model in the model_list 4 buildBlock ## Value a list including the boosted models, the ensemble forecast fitted_ensemble Fitted values (in-sample predictions) for the ensemble method (matrix). forecast_ensemble Forecast (out-sample predictions) for the ensemble method (matrix). fitted Fitted values of the last boosting iteration (vector). forecast Forecast of the last boosting iteration (vector). err_oob Estimated out-of-bag errors by iteration (vector). diversiy_oob Estimated out-of-bag diversity (vector). ## Author(s) Yannig Goude <yannig.goude@edf.fr> ## Examples buildBlock buildBlock ## Description Compute blocks of consecutive data for blockwise CV or sampling. ## Usage ``` buildBlock(Nblock, data0) ``` ## **Arguments** Nblock number of blocks data0 the learning set #### Value A list of vectors containing the indices of each block. ## Author(s) Yannig Goude <yannig.goude@edf.fr> buildBlock 5 ## Examples buildBlock(4, data.frame(id = 1:15)) ## **Index** ``` * Boosting Bodi-package, 2 * Ensemble Bodi-package, 2 * Regression Bodi-package, 2 bodi (Bodi-package), 2 Bodi-package, 2 bodi-package (Bodi-package), 2 boosting_diversity, 2 buildBlock, 4 ```