
Package ‘Morphoscape’
May 18, 2023

Type Package

Title Computation and Visualization of Adaptive Landscapes

Version 1.0.2

Description Implements adaptive landscape methods first de-
scribed by Polly et al. (2016) <doi:10.1080/02724634.2016.1111225> for the integration, analy-
sis and visualization of biological trait data on a phenotypic morphospace - typically de-
fined by shape metrics.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Depends R (>= 4.2.0)

Imports concaveman, ggplot2, spatial, sp, automap, scales,
viridisLite, alphahull

Suggests knitr, rmarkdown

VignetteBuilder knitr

URL https://blakedickson.github.io/Morphoscape/

RoxygenNote 7.2.3

NeedsCompilation no

Author Blake Dickson [aut, cre] (<https://orcid.org/0000-0001-6299-5224>),
Stephanie Pierce [aut] (<https://orcid.org/0000-0003-0717-1841>),
Noah Greifer [aut] (<https://orcid.org/0000-0003-3067-7154>)

Maintainer Blake Dickson <b.dickson@unsw.edu.au>

Repository CRAN

Date/Publication 2023-05-18 09:20:06 UTC

R topics documented:
as_fnc_df . 2
calcGrpWprime . 3
calcPoly . 5

1

https://doi.org/10.1080/02724634.2016.1111225
https://blakedickson.github.io/Morphoscape/
https://orcid.org/0000-0001-6299-5224
https://orcid.org/0000-0003-0717-1841
https://orcid.org/0000-0003-3067-7154

2 as_fnc_df

calcWprimeBy . 8
calc_all_lscps . 10
calc_lscp . 12
generate_weights . 13
krige_surf . 15
lands.grp.test . 17
lscp_operations . 20
plot.kriged_surfaces . 22
plot.wtd_lscp . 23
resample_grid . 25
turtles . 26
warps . 27

Index 29

as_fnc_df Convert a data frame to a fnc_df

Description

as_fnc_df() converts a data frame containing coordinates and functional charactertics in a mor-
phological space to a fnc_df object for use in later funcitons, most importantly krige_surf.

Usage

as_fnc_df(x, func.names = NULL, scale = TRUE)

Arguments

x a data frame containing coordinates and functional characteristics (and possibly
other variables, which are ignored). The first two columns must correspond to
the x and y coordinates of the warps in morphological space.

func.names the names of the variables in x the correspond to functional characteristics.
These charcteristics must be numeric variables. If NULL (the default), all vari-
ables other than the first two will be taken to be the functional characteristics
under study.

scale whether to scale the functional characteristics to have a minimum of 0 and a
maximum of 1. This should generally be left at its default (TRUE) unless the
variables have already been scaled.

Details

Input data can be from a sampled grid of locations in morphospace, measured specimen data,
species or group means, or a mix.

calcGrpWprime 3

Value

A fnc_df object, which is a data.frame with the x and y coordinates in the first two columns and
the functional characteristics in the other columns. The "func.names" attribute contains the names
of the functional characteristics.

See Also

as.data.frame

krige_surf for using an fnc_df object to create a kriged surface.

Examples

data("warps")

warps_fnc <- as_fnc_df(warps,
func.names = c("hydro", "curve",

"mech", "fea"))

str(warps_fnc)

calcGrpWprime Compute optimally weighted adaptive landscapes

Description

calcGrpWprime() computes the optimally weighted adaptive landscape by searching through the
adaptive landscapes formed from sets of weights and performance surfaces, and finding the set of
weights that yields the greatest overall (average) fitness value (Z) across a sample of data or a subset
thereof.

Usage

calcGrpWprime(x, index, method = "chi-squared",
quantile = 0.05)

S3 method for class 'grp_Wprime'
print(x,

digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x for calcGrpWprime(), an all_lscps object; the output of a call to calc_all_lscps.
for print(), a grp_Wprime object; the output of a call to calcGrpWprime()

index an optional vector of indices indicating which subset of the new_data dataset
originally supplied to krige_surf should be calculated. Can be specified as a
vector of numerical indicies, logical indices, or row names. If unspecified, the
optimal weights will be computed using the full sample. Supplied to subset, so
the name of the dataset containing the subsetting variable does not need to be
included if the subsetting variable is in new_data. See Examples.

4 calcGrpWprime

method the method used to compute the optimal weights. Allowable options include
"chi-square" (the default), "quantile", or "max". "chi-square" and "quantile"
involve averaging across the best several sets of weights, whereas "max" uses the
singular best set of weights. Abbreviations allowed. See Details.

quantile when method is "chi-square" or "quantile", the top quantile used to de-
termine the best sets of weights to be included in the average to compute the
optimal set of weights. Should be a number between 0 and 1, with a low value
indicating that only the few top sets of weights will be used. Ignored when
method = "max".

digits the number of significant digits to print.

... passed to print.default.

Details

calcGrpWprime() calculates an overall fitness score for each set of weights based on the average
weighted fitness values of the indexed subgroup. The set of weights that optimizes this score is
then produced as the weights defining the optimal adaptive landscape for that subgroup. The way
the final set of weights is computed depends on the argument to method. When method = "max",
the single best set of weights is used. However, often many of the upper sets of weights perform
equally or nearly equally as well as the best set. It is instead recommended to use "quantile"
or "chi-squared" methods. When method = "quantile", the top X% of weights are averaged
to compute the optimal weights, where X corresponds to the value supplied to quantile. When
method = "chi-square", the chi-squared value χ2

i is computed for each set of weights i as

χ2
i = −2 log

Zmax

Zi

where Zmax is the largest Z among the weights, and a p-value is computed for each χ2
i value using

a χ2 distribution with 2 d.f.; any set of weights with a p-value less than quantile is included to be
averaged to compute the optimal set of weights.

Value

A grp_Wprime object, which contains the following components:

Zprime a list containing the optimal weights and the Z value they yield (wn), and, if
method is "chi-square" or "quantile", summary statistics about the best sets
of weights used to compute the optimal weights, including the standard error
(wn.se), standard deviation (wn.sd), and range (wn.range).

W a matrix containing all sets of weights (i.e., those supplied to the grid_weights
argument of calc_all_lscps()) along with the Z value each yields, ordered in
descending order by the yielded Z value. When index is specified, the resulting
Z values are computed only using the indexed subset.

Wprime a wtd_lscp object containing the optimal weights (W) and the landscape grid
and sample functional characteristcs weighted by the optimal weights.

calcPoly 5

References

Dickson, B. V., Clack, J. A., Smithson, T. R., & Pierce, S. E. (2021). Functional adaptive landscapes
predict terrestrial capacity at the origin of limbs. Nature, 589(7841), 242-245.

Jones, K. E., Dickson, B. V., Angielczyk, K. D., & Pierce, S. E. (2021). Adaptive landscapes
challenge the "lateral-to-sagittal"" paradigm for mammalian vertebral evolution. Current Biology,
31(9), 1883-1892.

See Also

calc_all_lscps for computing the landscapes which are to be optimized.

calcWprimeBy for finding optimal sets of weights for multiple subgroups defined by a subgrouping
variable.

plot.grp_Wprime for plotting the resulting adaptive landscape.

Examples

data("warps")
data("turtles")

warps_fnc <- as_fnc_df(warps,
func.names = c("hydro", "fea"))

kr_surf <- krige_surf(warps_fnc, new_data = turtles)

grid_weights <- generate_weights(n = 3, data = kr_surf)

all_lscps <- calc_all_lscps(kr_surf,
grid_weights = grid_weights)

wprime_S <- calcGrpWprime(all_lscps,
index = Ecology == "S")

wprime_S
plot(wprime_S)

calcPoly Calculate polynomial fits over a surface

Description

calcPoly calls on the spatial package to fit rectangular spatial polynomial surface models by
least-squares, or GLS. These methods allow the user to test whether data have spatial trends in mor-
phospace. Outputs are a polynomial trend surface, and ANOVA table for the model fit. multiPoly
applies calcPoly to a fnc_df with outputs for each trait. For more extensive documentation for
model fitting see the spatial package.

6 calcPoly

Usage

calcPoly(fnc, npoly = 3, fnc.name = NULL,
gls.covmod = list(covmod = expcov, d = 0.7, alpha = 0, se = 1),
pad = 1.2, resample = 100, range = NULL, verbose = FALSE)

multiPoly(fnc_df, npoly = 3, ...)

Arguments

fnc an XYZ dataframe or matrix of a spatially distributed trait.
fnc_df a functional dataframe from as_fnc_df with colnames corresponding to X,Y

and trait names.
npoly singular numeric. Degree of polynomial to fit ragning from 1-4. For multiPoly

this can also be a vector with length equal to the numer of traits in order to
specify the degree of polynomial to apply to each trait.

gls.covmod Optional list of arguments to pass to surf.gls if fitting by generalized least-
squares is desired. Defaults to NULL, and fitting is performed by least-squares.
See surf.gls and expcov documentation for a full list of arguments and usage.

fnc.name Optional speficiation of the trait name. Defaults to NULL, and will use column
names instead.

pad Degree by which to extrapolate input data. Defaults to 1.2.
resample Resampling density. Corresponds to the number of points calculated along both

X and Y axes. Defaults to 100. If no resampling is desired, set reample = NULL

range Optional. Manually set X and Y ranges. Input is a 2x2 matrix with rows corre-
sponding to X and Y ranges respectively.

verbose Optional. Logical. If TRUE, will print ANOVA tables.
... Arguments to pass onto calcPoly when using multiPoly

Details

Fits polynomial trend surfaces using the ‘spatial‘ package. First, an npoly polynomial trend surface
is fit by least squares using surf.ls or generalized least-squares by surf.gls. GLS is fit by one of
three covariance functions, exponential (expcov), gaussian (gaucov) or spherical (sphercov) and
requires additional parameters to be passed as a list through gls.covmod (see examples). For a full
description of arguments and usage see surf.gls and expcov documentation.

The surface is then evaluated using trmat within limits set by input data, or manually using range.

Value

An object of class poly_surf, or multi_surf with the following components:

fnc.name name of trait
poly Polynomial trend fit output from surf.ls

surface Evaluated trend surface output from trmat

grid Expanded surface in long XZY dataframe format
peak Coordinates and height of the peak of the surface

calcPoly 7

Author(s)

Blake V. Dickson

References

Dickson, B.V. and Pierce, S.E. (2019), Functional performance of turtle humerus shape across an
ecological adaptive landscape. Evolution, 73: 1265-1277. https://doi.org/10.1111/evo.13747

See Also

surf.ls, surf.gls, expcov, trmat,

Examples

require(spatial)

data("warps")
warps_fnc <- as_fnc_df(warps)

Make single trait dataframe
hydro_fnc <- data.frame(warps_fnc[,1:2], warps_fnc[,"hydro"])

polysurf <- calcPoly(hydro_fnc)
summary(polysurf)
plot(polysurf)

Fit using gls

polysurf <- calcPoly(hydro_fnc, gls.covmod = list(covmod = expcov, d = 0.7, alpha = 0, se = 1))
Not run:
summary(polysurf)

End(Not run)
plot(polysurf)

Calculate multiple polynomial surfaces

multi_poly <- multiPoly(warps_fnc)
Not run:
summary(multi_poly)

End(Not run)
plot(multi_poly)

Set manual range

polysurf <- calcPoly(hydro_fnc, range = rbind(range(warps_fnc$x) * 1.2,
range(warps_fnc$y) * 1.4))

polysurf <- calcPoly(hydro_fnc, range = rbind(c(-0.2, 0.12),
c(-0.06, 0.1)))

Not run:

8 calcWprimeBy

summary(polysurf)

End(Not run)
#
Adjust polynomial degree

multiPoly(warps_fnc, npoly = 2)

Specify multiple degrees

multi_poly <- multiPoly(warps_fnc, npoly = c(2,3,4,3))

Not run:
summary(polysurf)

End(Not run)
plot(polysurf)

calcWprimeBy Compute optimally weighted adaptive landscapes by subgroup

Description

calcWprimeBy() computes the optimally weighted adaptive landscape by searching through the
adaptive landscapes formed from sets of weights and performance surfaces, and finding the set of
weights that yields the greatest overall (average) fitness value (Z) across subsets of a sample dataset.

Usage

calcWprimeBy(x, by, method = "chi-squared", quantile = 0.05)

S3 method for class 'by_Wprime'
print(x,

digits = max(3L, getOption("digits") - 3L), ...)

S3 method for class 'by_Wprime'
summary(object, ...)

S3 method for class 'summary.by_Wprime'
print(x,

digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x for calcWprimeBy(), an all_lscps object; the output of a call to calc_all_lscps.
for print.by_Wprime(), a by_Wprime object; the output of a call to calcWprimeBy().
for print.summary.by_Wprime(), a by_Wprime object; the output of a call to
summary.by_Wprime().

calcWprimeBy 9

by a one-sided formula containing the grouping variable on the right hand side
(e.g., ~g) or a vector containing the subgrouping variable. When supplied as a
formula, the grouping variable must be present in the global environment or in
the new_data component in the kriged_surfaces object originally supplied to
calc_all_lscps().

method the method used to compute the optimal weights. Allowable options include
"chi-square" (the default), "quantile", or "max". "chi-square" and "quantile"
involve averaging across the best several sets of weights, whereas "max" uses
the singular best set of weights. Abbreviations allowed. See calcGrpWprime
for details.

quantile when method is "chi-square" or "quantile", the top quantile used to de-
termine the best sets of weights to be included in the average to compute the
optimal set of weights. Should be a number between 0 and 1, with a low value
indicating that only the few top sets of weights will be used. Ignored when
method = "max". See calcGrpWprime for details.

digits the number of significant digits to print.

... passed to print.default and print.table.

object a by_Wprime object; the output of a call to calcWprimeBy().

Details

calcWprimeBy() splits the sample data based on the by variable and then calls calcGrpWprime on
each subset. The main benefit of using calcWprimeBy() is that the subgrouping variable is part of
the output object and therefore can be used in plotting using plot.by_Wprime.

Value

A by_Wprime object contaning the following components:

by the subgrouping variable supplied to by, stored as a factor and with a "by_name"
attribute containing the name of the variable.

grp_Wprimes a list of grp_Wprime objects, one for each level of the subgrouping variable.

See Also

calc_all_lscps for computing the landscapes which are to be optimized.

calcGrpWprime for finding optimal sets of weights for a single subgroup.

plot.by_Wprime for plotting the resulting adaptive landscapes.

Examples

data("warps")
data("turtles")

warps_fnc <- as_fnc_df(warps,
func.names = c("hydro", "fea"))

kr_surf <- krige_surf(warps_fnc, new_data = turtles)

10 calc_all_lscps

grid_weights <- generate_weights(n = 3, data = kr_surf)

all_lscps <- calc_all_lscps(kr_surf,
grid_weights = grid_weights)

wprime_Ecology <- calcWprimeBy(all_lscps, by = ~Ecology)
wprime_Ecology
summary(wprime_Ecology)
plot(wprime_Ecology)

calc_all_lscps Calculate adaptive landscapes for a matrix of weights

Description

calc_all_lscps() calculates adaptive landscapes from a set of kriged surfaces of functional char-
acteristics and sets of weights for those characteristics.

Usage

calc_all_lscps(kr_data, grid_weights, file = NULL)

Arguments

kr_data a kriged_surfaces object; the output of a call to krige_surf.

grid_weights a grid_weights object; the output of a call to generate_weights.

file the path of a file to save the resulting output object, which may be quite large.
The file path should contain an .rds or .rdata extension, which will be saved
using saveRDS or save, respectively. See Details on how to load these files after
saving them.

Details

calc_all_lscps() computes a combined adaptive landscape for each of the supplied sets of
weights. The optimal landscape overall or for certain subsets of the sample data can be found using
calcGrpWprime or calcWprimeBy. calc_lscp can be used to extract the surface of the weighted
functional characteristics for each set of weights (see Examples).

Because the resulting objects are so large, it can be a good idea to save them after creation, which
can be done automatically using the file argument. If the supplied file extension is .rds, saveRDS
will be used to save the object to the supplied file path, and the file can be loaded using readRDS. If
the supplied file extension is .RData, save will be used to save the object to the supplied file path,
and the file can be loaded using load.

calc_all_lscps 11

Value

An all_lscps object containing the following components:

dataframe a list of the grid and new_data data frames stored in kr_data.

wtd_lscps a list containing the weightred fitness values for each set of weights for the grid
and new_data datasets. These are stored in matrices with a row for each data
point in grid and new_data and a column for each set of weights.

grid_weights the grid_weights object supplied to grid_weights.

See Also

calc_lscp for computing a single weighted landscape or extracting the weighted surface of func-
tional characteristics for a single set of weights.

generate_weights for generating the required matrix of weights.

calcGrpWprime and calcWprimeBy for finding optimal sets of weights and adaptive landscapes for
subgroups.

Examples

data("warps")
data("turtles")

warps_fnc <- as_fnc_df(warps,
func.names = c("hydro", "fea"))

kr_surf <- krige_surf(warps_fnc, new_data = turtles)

grid_weights <- generate_weights(n = 20, data = kr_surf)

all_lscps <- calc_all_lscps(kr_surf,
grid_weights = grid_weights)

all_lscps

Extract the weighted surface for a single set
of weights (here, the 6th set of weights)

grid_weights[6,]

wtd_lscp_6 <- calc_lscp(all_lscps, i = 6)
wtd_lscp_6

This aligns with the weighted fitness value:
mean(all_lscpswtd_lscpsnew_data[,6])

12 calc_lscp

calc_lscp Calculate a single weighted adaptive landscape

Description

calc_lscp() calculates a single weighted landscape from a set of kriged surfaces of functional
characteristics and a set of weights for those characteristics. This landscape can then be plotted
using plot.wtd_lscp. Additionally computes the fitness values for a sample of additional coordi-
nates.

Usage

calc_lscp(data, weights, ...)

S3 method for class 'kriged_surfaces'
calc_lscp(data, weights, ...)

S3 method for class 'all_lscps'
calc_lscp(data, weights, i, ...)

Arguments

data a kriged_surfaces or all_lscps object; the output of a call to krige_surf or
calc_all_lscps, repsectively. If no new_data component is included in data,
only the adaptive landscape will be produced.

weights a vector of weights, one for each functional characteristic. These weights should
be nonnegative and sum to 1.

i when data is an all_lscps object, the index of the set of weights in the grid_weights
object supplied to calc_all_lscps() to use to create the weighted landscape.

... ignored.

Details

calc_lscp() operates on the kriged surfaces stored in data by multiplying the functional char-
acteristic values of each point on the surface grid by the weights and computing the sum of those
values to arrive at a "fitness" value that is represented by the maximum height of the combined
adaptive landscape. When a new_data component is present in data (e.g., because a new_data
argument was supplied to krige_surf() or data is the output of a call to krige_new_data()), the
weighted fitness values will be computed for the coordinates in new_data as well.

Value

A wtd_lscp object, which contains the following components:

W a named vector of the supplied weights

generate_weights 13

Wprime a list containing the weighted grid and new_data components of data, where
the values of the functional characteristics for each location on the surface are
weighted by the supplied weights and an additiona column, Z, has been added
containing the height of the adaptive landscape at that point.

See Also

plot.wtd_lscp for plotting the resulting weighted landscape.

generate_weights for generating a matrix of weights.

calc_all_lscps for computing weighted landscapes for a matrix of weights (i.e., rather than the
single set of weights that can be used with calc_lscp). For finding an optimal set of weights,
calc_all_lscps should be used, though it only produces the weighted fitness values for each set
of weightd and not the weighted functional characteristic surfaces.

Examples

data("warps")

warps_fnc <- as_fnc_df(warps, func.names = c("hydro", "fea"))

kr_surf <- krige_surf(warps_fnc)

weights <- c(hydro = .5, fea = .5)

w_lscp <- calc_lscp(kr_surf, weights = weights)

plot(w_lscp)

Adding new_data
data("turtles")
kr_surf <- krige_new_data(kr_surf, new_data = turtles)

w_lscp <- calc_lscp(kr_surf, weights = weights)
w_lscp
plot(w_lscp)

See further use with calc_all_lscps()
at help("calc_all_lscps")

generate_weights Generate a matrix containing weight combinations

Description

generate_weights() generates a matrix containing weight combinations for a set of variables
such that each set of weights sums to 1. This can be supplied to calc_all_lscps to calculate
fitness landscapes corresponding to a variety of possible sets of weights for weighting functional
characteristics. The weights are generated by partitioning a weight of 1 across however many
variables are requested in all possible ways.

14 generate_weights

Usage

generate_weights(step, n, data = NULL, nvar = NULL,
varnames = NULL, verbose = TRUE)

Arguments

step numeric. The step size between weight partitions. Only one of step and n can
be specified.

n numeric. The number of weight partitions between 0-1. Only one of step and
n can be specified.

data an optional fnc_df (the output of as_fnc_df) or kriged_surfaces (the output
krige_surf) object. The number of variabes and their names will be extracted
from the data as the functional characteristics present in them.

nvar the number of variables across which to allocate the weights. Ignored if data is
not NULL. If nvar = NULL and varnames is supplied, the length of varnames will
be used for nvar.

varnames the names of the variables across which to allocate the weights. Ignored if data
is not NULL. If varnames = NULL and nvar is supplied, the sequence from 1 to
nar will be used for varnames.

verbose whether to display a message noting the number of sets of weights created.

Details

generate_weights() works by fining all possible allocations of n objects into nvar bins. When
step is supplied, n is computed as round(1/step), so the resulting weight partitions may not be
exactly equal to step when its inverse is not an integer. The larger n is (or the smaller step) is,
the more possible allocations will be produced (i.e., and the resulting object will have more rows).
The output of generate_weights() can quickly become very large with increasing number of
variables, and will make subsequent analyses slow. It is recommended to start with a large step
size, or small n, and increment up.

Value

A grid_weights object, which is a matrix with a row for each each set of weights and a column
for each variable over which the weights are allocated. The weights in each row will sum to 1.

Examples

Allocating 10 partitions of .1 across 3 variables
wmat <- generate_weights(n = 10, nvar = 3)
head(wmat)

Allocating 5 partitions of .2 across the 4 functional
characteristics in the warps dataset
data("warps")

warps_fnc <- as_fnc_df(warps)
wmat <- generate_weights(n = 5, data = warps_fnc)

krige_surf 15

head(wmat)

Using 'step' for the same result:
wmat <- generate_weights(step = .2, data = warps_fnc)
head(wmat)

krige_surf Interpolate functional characteristics over a grid

Description

krige_surf() performs kriging (i.e., interpolation) of one or more functional characteristics that
are spatially distributed over a morphospace to create a smoothly kriged surface. Interpolated values
can also be produced for a new dataset given their coordinates in morphological space.

Usage

krige_surf(fnc_df, grid = NULL, resample = 100, padding = 1.2, hull = NULL,
alpha = 1, new_data = NULL)

krige_new_data(x, new_data)

Arguments

fnc_df a fnc_df object; the output of a call to as_fnc_df, which contains coordinates
in morphological space and values of functional characteristics for the warps
used to create the kriged surface.

grid a matrix or data frame containing the grid of points over which the surface is to
be interpolated. Should be the output of a call to resample_grid. If NULL, the
grid will be formed by calling resample_grid() on the inputs.

resample the number of points (or pixels) in the x and y dimensions over which to create
the grid. Default is 100 for a kriged surface of 100x100=10,000 pixels. Passed
to resample_grid. Ignored when grid is not NULL.

padding a number representing how much to expand the grid beyond the ranges of the x-
and y-coordinates. For example, padding = 1.2 (the default) expands the grid
by 20% of the coordinates’ ranges in each direction. Must be a number greater
than or equal to 1. Large numbers imply greater extrapolation, and whatever
padding is added will be negated if hull = TRUE. Passed to resample_grid.
Ignored when grid is not NULL.

hull method to to restrict kriging to an alpha hull to prevent extrapolation beyond the
coordinates present in fnc_df. Passed to resample_grid, which uses alphahull
or concaveman packages. Default is alphahull::ahull. If no hull is desired
set hull = NULL. If NULL, kriging will take place over a rectangular grid that
spans the boundaries of the coordinates in fnc_df. Ignored when grid is not
NULL

16 krige_surf

alpha the alpha value used to create the alpha hull. Passed to resample_grid and
eventually to alphahull::ahull. Ignored when grid is not NULL.

new_data a dataset of coordinates for a new sample; the values of the functional charac-
teristics for this sample will be interpolated using the kriged surface.

x a "kriged_surfaces" object; the output of a call to krige_surf().

Details

krige_surf() implements the automap::autoKrige function on one or more spatially distributed
traits to produce an interpolated (or extrapolated) surface of evenly spaced gridpoints. This is done
by automatiically finding the best variogram fit for each of the non-corrdinate variables in fnc_df.
For details on automatic variogram fitting, see automap::autoKrige.

Input data in fnc_df can be unevenly distributed (direct from speciments), or gridded (determined
from evenly distributed hypothetical shapes) in morphospace. Trait data inputted directly from
specimen measurements will be subject to error based on the how unevenly points are distributed,
with high resoultion gridded datapoints producing the least potential reconstruction error (see Smith
et al 2021).

By default krige_surf will create a hull to strictly prevent any extrapolation beyond the provided
data. This will produce the most conservative landscapes. If hull is set to FALSE, then the function
will reconstruct a rectangle determined by the XY coordinate ranges supplied in fnc_df. Padding
will be applied by default (an extra 20%) as defined by padding, to expand the rectangle beyond
the supplied points. Reconstructions without a hull would be most appropriate for trait data deter-
mined from evenely spaced hypothetical gridpoints. If grid is provided the function will strictly
interpolate at these gridded points.

krige_new_data() adds a new data set to the supplied kriged_surfaces object and interpolates
the values of the functional characteristics on the suppllied sample. This should only be used to add
a new dataset to a kriged_surfaces object produced without new_data supplied or to replace an
existing new_data component.

Value

An object of class kriged_surfaces containing the following components:

fnc_df the original data frame of functional characteristics passed to fnc_df.

autoKrige a named list of the kriged surfaces, one for each functional characteristic. Each
surface is of class autoKrige, the output of the call to automap::autoKrige.

dataframes a list of two data frames, grid and new_data. grid contains the coordinates
of the kriged surface grid (in the x and y columns) as well as the interpolated
values of the functional characteristics. new_data contains the sample coordi-
nates supplied to new_data as well as the interpolated values of the functional
characteristics for each sample. This second component is absent if new_data =
NULL in the call to krige_surf().

For krige_new_data(), the original kriged_surfaces object, with the $dataframes$new_data
component containing the sample coordinates supplied to new_data as well as the interpolated
values of the functional characteristics for each sample.

lands.grp.test 17

References

Smith, S. M., Stayton, C. T., & Angielczyk, K. D. (2021). How many trees to see the forest?
Assessing the effects of morphospace coverage and sample size in performance surface analysis.
Methods in Ecology and Evolution, 12(8), 1411-1424.

See Also

plot.kriged_surfaces for plotting the kriged surfaces.

as_fnc_df for creating the input dataset.

resample_grid for creating the grid over which the kriging occurs prior to using krige_surf.

automap::autoKrige for the function that does the kriging.

Examples

data("warps")

warps_fnc <- as_fnc_df(warps)

grid <- resample_grid(warps, hull = "concaveman", plot = TRUE)

kr_surf <- krige_surf(warps_fnc, grid = grid)
kr_surf

Add new data
data("turtles")
kr_surf <- krige_new_data(kr_surf, new_data = turtles)
kr_surf
plot(kr_surf)

Doing it all in one step:
Not run:
kr_surf <- krige_surf(warps_fnc, new_data = turtles, hull = "alphahull")
kr_surf

End(Not run)

No hull and padding
kr_surf <- krige_surf(warps_fnc, new_data = turtles, hull = NULL, padding = 1.2)
plot(kr_surf)

lands.grp.test Significance tests between sets of weights

18 lands.grp.test

Description

lands.grp.test() performs a statistical test for whether the optimal adaptive landscape for two
subgroups are significantly different from each other. The p-value of the test is the proportion
of weight sets that are shared between the two subgroups among their respective top weight sets.
multi.lands.grp.test() performs this test for all pairs of subgroups.

Usage

lands.grp.test(grpa, grpb, method = "chi-squared",
quantile = 0.05)

multi.lands.grp.test(x, method = "chi-squared",
quantile = 0.05)

S3 method for class 'lands.grp.test'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

S3 method for class 'multi.lands.grp.test'
print(x, digits = max(3L, getOption("digits") - 3L),

style = "matrix", ...)

Arguments

grpa, grpb for lands.grp.test(), the two grp_Wprime objects containing the adaptive
landscapes to be compared; these are the output of calls to calcGrpWprime.

x for multi.lands.grp.test(), a by_Wprime object, the output of a call to
calcWprimeBy.
for print(), the output of a call to lands.grp.test() or multi.lands.grp.test().

method the method used to determine which sets of weights are in the "best" sets of
weights that are to be comapred between the two groups. Allowable options
include "chi-squared" and "quantile". See calcGrpWprime for details.

quantile the top quantile used to determine the best sets of weights to be included in the
average to compute the optimal set of weights. Should be a number between 0
and 1, with a low value indicating that only the few top sets of weights will be
used. See calcGrpWprime for details.

digits the number of significant digits to print.

style how to display the results of the pairwise tests; allowable options include "matrix"
and "table". Abbreviations allowed.

... passed to print.default.

Details

lands.grp.test() performs pairwise comparisons between two adaptive groups by comparing
the number of shared landscapes nA+B in the top percentile of each group with the total number of
landscapes in this top percentile ntotal. The probability P (A = B) thus is calculated as:

P (A = B) = nA+B/ntotal

lands.grp.test 19

If method = "quantile" is used, then the top percentile is defined by quantile. If method =
"chi-squared" is used, then the top percentile is calculated from the chi-squared value χ2

i as:

χ2
i = −2 log

Zmax

Zi

where Zmax is the largest Z among the weights, and a p-value is computed for each χ2
i value using

a χ2 distribution with 2 d.f.; any set of weights with a p-value less than quantile is included in the
optimal set of weights.

multi.lands.grp.test() is a wrapper for lands.grp.test(), applying the function pairwise to
all combinations of groups calculated by calcWprimeBy.

Value

For lands.grp.test(), a lands.grp.test object containing the following components:

n.match the number of sets of weights that match between the two supplied subgroups

p.val the p-value of the test, computed as the number of sets of weights that match
divided by the number of sets of weights compared

matching a matrix containing the sets of weights that match between the two subgroups

method the argument supplied to method

quantile the argument supplied to quantile

For multi.lands.grp.test(), a multi.lands.grp.test object containing the following com-
ponents:

res a data frame containing the results of the tests, with the columns Group A and
Group B indicating the groups involved in the comparison, the column Matches
containing the number of matching sets of weights in the comparison, and the
column p value containing the p-value of the test.

method the argument supplied to method

quantile the argument supplied to quantile

For print.multi.lands.grp.test(), setting style = "table" prints the res component as-is;
setting style = "matrix" creates a matrix where the p-values of the test are below the diagonal and
the number of matches of the test are above the diagonal.

References

Jones, K. E., Dickson, B. V., Angielczyk, K. D., & Pierce, S. E. (2021). Adaptive landscapes
challenge the "lateral-to-sagittal"" paradigm for mammalian vertebral evolution. Current Biology,
31(9), 1883-1892.

See Also

calcGrpWprime and calcWprimeBy for creatign the objects used as inputs to these functions

20 lscp_operations

Examples

data("warps")
data("turtles")

warps_fnc <- as_fnc_df(warps,
func.names = c("hydro", "fea"))

kr_surf <- krige_surf(warps_fnc, new_data = turtles)

grid_weights <- generate_weights(n = 3, data = kr_surf)

all_lscps <- calc_all_lscps(kr_surf,
grid_weights = grid_weights)

Comparing adaptive landscapes of Ecology groups S and M
wprime_S <- calcGrpWprime(all_lscps,

index = Ecology == "S")
wprime_M <- calcGrpWprime(all_lscps,

index = Ecology == "M")
lands.grp.test(wprime_S, wprime_M)

Comparing adaptive landscapes of all Group subgroups
wprime_by_Group <- calcWprimeBy(all_lscps, by = ~Group)
tests <- multi.lands.grp.test(wprime_by_Group)
tests
print(tests, style = "table")

lscp_operations Simple Operations on Spatial Data

Description

Perform simple operations (sum, sub, mult, div) on one or multiple landscapes (see details for use
cases)

Usage

sum_lscps(lscps, num = NULL, average = TRUE)
mult_lscps(lscps, num = NULL)
sub_lscps(lscps, binary = FALSE)
div_lscps(lscps, binary = FALSE)

Arguments

lscps A named list containing datasets of spatial data to apply operations (see details).

lscp_operations 21

num Optional. Defaults to NULL. A vector containing a single numeric scalar or
numeric vector with length = lscps to scale by when using sum_lscps and
mult_lscps(). If NULL, these functions will operate between lscps. If num is
provided, these functions will operate between lscps and num.

binary If subracting or dividing landscapes, binarize result to obtain logical [0,1] result
(see details for use case)

average if summation is performed, should the result be averaged for the number of
landscapes

Details

Simple operations are applied to one or more landscapes depending on use case. Spatial datasets
can be supplied in an XYZ dataframe, or as any landscape output from Morphoscape.

sum - sum a single spatial dataset/landscape with a single scalar (lscp1 + num1); sum two or more
spatial datasets/landscapes together (lscp1 + lscp2 ... lscpN); or sum multiple landscapes with
multiple scalars ((lscp1, lscp2 ... lscpN) + (num1, num2, ..., numN))

mult - multiply a single spatial dataset/landscape with a single scalar (lscp1 * num1); multiply
two or more spatial datasets/landscapes together (lscp1 * lscp2 ... lscpN); or multiply multiple
landscapes with multiple scalars ((lscp1, lscp2 ... lscpN) * (num1, num2, ..., numN))

sub - substract one spatial dataset/landscape from another (lscp1 - lscp2). If numeric subtraction
is desired, use sum_lscps with negative num values.

div - divide one spatial dataset by another (lscp1 / lscp2).

sub_lscps() and div_lscps can be used to construct transition landscapes per (Dickson et al
2020) which can compare performance between two adaptive regimes. If binary = T is used, the
result will be a spatial representation of which parent landscape dominates. However, it is rec-
ommended to use trans_lscps or adpt_regions to calculate transtional landscapes or adaptive
regions (not yet implemented).

Value

An object of class "combined.surface" containing XYZ spatial data.

Author(s)

Blake V. Dickson

See Also

krige_surf, calcGrpWprime, calc_lscp, calcPoly, trans_lscps, adpt_regions

Examples

require("Morphoscape")

data("turtles")
data("warps")

fnc_df <- as_fnc_df(warps,

22 plot.kriged_surfaces

func.names = c("hydro", "curve", "mech", "fea"))

kr_surf <- krige_surf(fnc_df, new_data = turtles)

grid_weights <- generate_weights(n = 10, data = kr_surf)

all_lscps <- calc_all_lscps(kr_surf,
grid_weights = grid_weights)

wprime_S <- calcGrpWprime(all_lscps,
index = Ecology == "S")

wprime_T <- calcGrpWprime(all_lscps,
index = Ecology == "T")

lscps <- list(wprimeS = wprime_S, wprime_T = wprime_T)

summing multiple landscapes together

summed_surfs <- sum_lscps(lscps, average = TRUE)

summing landscapes by one or more numeric scalars

summed_surfs <- sum_lscps(lscps, num = c(1.5, -1.15)) # multiple numeric, with subtraction

multiplying mutliple landscapes together
mult_surfs <- mult_lscps(lscps) # multiply landscapes together

multiplying landscapes by one or more numeric scalars
mult_surfs <- mult_lscps(lscps, num = 2) # apply numeric multiplier to all landscapes
mult_surfs <- mult_lscps(lscps, num = c(1.2, 0.8)) # apply numeric elements to each landscape

substract or divide two landscapes

sub_surf <- sub_lscps(lscps)
div_surf <- div_lscps(lscps)

with binary result

sub_surf <- sub_lscps(lscps, binary = TRUE)
div_surf <- div_lscps(lscps, binary = TRUE)

plot.kriged_surfaces Plots Kriged surfaces of functional characteristics

Description

plot.kriged_surfaces() produces spatial landscape plots of kriged surfaces produced by krige_surf.

plot.wtd_lscp 23

Usage

S3 method for class 'kriged_surfaces'
plot(x, alpha = 0.5, pt.col = "black",

interpolate = TRUE, contour = TRUE, ...)

Arguments

x a kriged_surfaces object; the output of a call to krige_surf.

alpha, pt.col when a new_data component is present in x, the transparency (alpha) and color
(pt.col) of the points plotted for the new samples.

interpolate logical; whether to smooth the plot by interpolating across pixels in the grid.
Passed to ggplot2::geom_raster.

contour logical; whether to add contour lines to the plot to illustrate changes in the
fitness landscape.

... ignored.

Details

plot.kriged_surfaces() is a wrapper for ggplot2 raster plotting functions. For more precise
control of raster plotting see ggplot2::geom_raster.

Value

A ggplot object, which can be further manipulated using ggplot2 functionality.

See Also

ggplot2::ggplot, ggplot2::geom_raster, and ggplot2::geom_contour for the underlying plot-
ting functions. See also sp::spplot for alternative plotting functions.

krige_surf for generating the kriged surfaces. krige_new_data for adding a new_data compo-
nent to an existing kriged surface before plotting.

Examples

See examples at help("krige_surf")

plot.wtd_lscp Plot Adaptive Landscapes

Description

These plot plot methods plot an adaptive landscape, a weighted combination of functional sur-
faces. These landscape arise from calls to calc_lscp, calc_all_lscps, calcGrpWprime, and
calcWprimeBy.

24 plot.wtd_lscp

Usage

S3 method for class 'wtd_lscp'
plot(x, alpha = 1, pt.col = "black",

interpolate = TRUE, contour = TRUE, ...)
S3 method for class 'grp_Wprime'
plot(x, alpha = 1, pt.col = "black",

interpolate = TRUE, contour = TRUE, ...)
S3 method for class 'by_Wprime'
plot(x, level, ncol = 1, alpha = 1,

pt.col = "black", interpolate = TRUE, contour = TRUE,
...)

Arguments

x a wtd_lscp, grp_Wprime, or by_Wprime object, the output of a call to calc_lscp,
calcGrpWprime, or calcWprimeBy, respectively.

alpha the transparency of the points for the data sample. A number between 0 (fully
transparent) and 1 (fully opaque). Passed to ggplot2::geom_point.

pt.col the color of the points for the data sample. Passed to ggplot2::geom_point.

interpolate whether to interpolate across pixels in the grid. Passed to ggplot2::geom_raster.

contour whether to display contours in the grid.

level which level of the by (subgrouping) variable to be plotted. If missing, all will be
plotted.

ncol when multiple subgroups are plotted, in how many columns should the plots be
arranged.

... ignored.

Details

These plotting functions are wrappers for ggplot2 raster plotting functions. For more precise con-
trol of raster plotting see ggplot2::geom_raster.

Value

A ggplot object that can be further adjusted using functions from ggplot2.

See Also

calc_lscp, calc_all_lscps, calcGrpWprime, and calcWprimeBy for the functions used to create
the objects that are plotted

plot.kriged_surfaces for plotting functional surfaces prior to combining them into an adaptive
landscape.

ggplot2::geom_raster, ggplot2::geom_point, and ggplot2::geom_contour for the underly-
ing plotting functions.

resample_grid 25

Examples

data("warps")
data("turtles")

warps_fnc <- as_fnc_df(warps, func.names = c("hydro", "fea"))

kr_surf <- krige_surf(warps_fnc, new_data = turtles)

weights <- c(hydro = .5, fea = .5)

w_lscp <- calc_lscp(kr_surf, weights = weights)

plot(w_lscp)
plot(w_lscp, countour = FALSE, pt.col = "white")

See help("calc_lscp"), help("calcGrpWprime"), and
help("calcWprimeBy") for examples when used with
those functions

resample_grid Create a full grid from a set of coordinates

Description

resample_grid() creates a rectangular grid around supplied coordinates by resampling evenly
spaced points between the minimum and maximum values of each coordinate dimension. The grid
can optionally be reduced to a convex or concave hull around the supplied coordinates.

Usage

resample_grid(coords2D, resample = 100, padding = 1.2, hull = NULL, alpha = 1,
plot = FALSE)

Arguments

coords2D a 2-column matrix data frame of coordinates with the x-coordinates in the first
column and the y-coordinates in the second column. The ranges of each column
will be used to create the resampled grid.

resample the number of points (or pixels) in the x and y dimensions over which to create
the grid. Default is 100 for a kriged surface of 100x100=10,000 pixels.

padding a number representing how much to expand the grid beyond the ranges of the x-
and y-coordinates. For example, padding = 1.2 (the default) expands the grid
by 20% of the coordinates’ ranges in each direction. Must be a number greater
than or equal to 1. Large numbers imply greater extrapolation, and whatever
padding is added will be negated if hull is specified.

hull method to restrict the grid to an alpha hull using alphahull] or concaveman
packages. Default is ‘NULL‘ and no hull will be calculated.

26 turtles

alpha when hull != NULL, the alpha value used to create the hull. Passed to ahull or
concaveman.

plot Logical. When hull is specified, whether to plot the resulting hull overlayed
over the original grid. Default is TRUE.

Value

A data frame with two columns, x and y, containing the resampled coordinate grid. When hull is
specified, any points not in the hull will be absent.

See Also

krige_surf, which uses resample_grid for kriging.

ahull and inahull, or concaveman for creating the hull.

Examples

data("warps")

warps_fnc <- as_fnc_df(warps)

hull with plot to see the hull
grid <- resample_grid(warps_fnc[c("x", "y")],

hull = "concaveman", plot = TRUE)
str(grid)

Not run:
Alpha hull with plot to see the hull
grid <- resample_grid(warps_fnc[c("x", "y")],

hull = "alphahull", plot = TRUE)

End(Not run)

turtles Turtle Humeri

Description

A dataset containing a sample of 40 turtle humeri used in Dickson and Pierce (2019).

Usage

data("turtles")

warps 27

Format

A data frame with 40 observations on the following 4 variables.

x the first axis of shape variation as determiend by a between-groups principal components analysis

y the second axis of shape variation as determiend by a between-groups principal components
analysis

Group the locomotor ecologies of the turtles

Ecology the three ecological groups as determined by a Procrustes ANOVA; "M" (marine), "S"
(semiaquatic), and "T" (terrestrial)

Source

Dickson, B.V. and Pierce, S.E. (2019), Functional performance of turtle humerus shape across an
ecological adaptive landscape. Evolution, 73: 1265-1277. doi:10.1111/evo.13747

warps Simulated Shape Warps

Description

Trait data for simulated shape warps of turtle humeri used to study the morphological evolution of
turtles in Dickson and Pierce (2019). The morphospace was defined by a geometric morphomet-
ric analyises of 1028 psuedolandmarks on 40 turtle humeri. Hypothetical shape warps were then
produced on a 4x6 grid accross morphospace. For each shape warp, four functional traits were
measured, corresponding to a locomotory performance trait: stress under simulated load (strength),
bone curvature (stride length), muscular mechanical advantage (mechanical advantage), and frontal
area (hydrodynamics).

Usage

data("warps")

Format

A data frame with 24 observations on the following 6 variables.

x the first axis of shape variation as determiend by a between-groups principal components analysis
of the turtles dataset

y the second axis of shape variation as determiend by a between-groups principal components
analysis of the turtles dataset

hydro hydrodynamics

curve stride length

mech mechanical advantage

fea strength (assessed using finite element analysis)

https://doi.org/10.1111/evo.13747

28 warps

Source

Dickson, B.V. and Pierce, S.E. (2019), Functional performance of turtle humerus shape across an
ecological adaptive landscape. Evolution, 73: 1265-1277. doi:10.1111/evo.13747

https://doi.org/10.1111/evo.13747

Index

∗ datasets
turtles, 26
warps, 27

ahull, 26
alphahull::ahull, 15, 16
as.data.frame, 3
as_fnc_df, 2, 14, 15, 17
attribute, 3
automap::autoKrige, 16, 17

calc_all_lscps, 3, 5, 8, 9, 10, 12, 13, 23, 24
calc_lscp, 10, 11, 12, 21, 23, 24
calcGrpWprime, 3, 9–11, 18, 19, 21, 23, 24
calcPoly, 5, 21
calcWprimeBy, 5, 8, 10, 11, 18, 19, 23, 24
concaveman, 26

div_lscps (lscp_operations), 20

expcov, 6, 7

fnc_df (as_fnc_df), 2

generate_weights, 10, 11, 13, 13
ggplot2::geom_contour, 23, 24
ggplot2::geom_point, 24
ggplot2::geom_raster, 23, 24
ggplot2::ggplot, 23

inahull, 26

krige_new_data, 23
krige_new_data (krige_surf), 15
krige_surf, 2, 3, 10, 12, 14, 15, 21–23, 26
kriged_surfaces (krige_surf), 15

lands.grp.test, 17
load, 10
lscp_operations, 20

mult_lscps (lscp_operations), 20

multi.lands.grp.test (lands.grp.test),
17

multiPoly (calcPoly), 5

plot.by_Wprime, 9
plot.by_Wprime (plot.wtd_lscp), 23
plot.grp_Wprime, 5
plot.grp_Wprime (plot.wtd_lscp), 23
plot.kriged_surfaces, 17, 22, 24
plot.wtd_lscp, 12, 13, 23
print.by_Wprime (calcWprimeBy), 8
print.default, 4, 9, 18
print.grp_Wprime (calcGrpWprime), 3
print.lands.grp.test (lands.grp.test),

17
print.multi.lands.grp.test

(lands.grp.test), 17
print.summary.by_Wprime (calcWprimeBy),

8
print.table, 9

readRDS, 10
resample_grid, 15–17, 25

save, 10
saveRDS, 10
sp::spplot, 23
sub_lscps (lscp_operations), 20
subset, 3
sum_lscps (lscp_operations), 20
summary.by_Wprime (calcWprimeBy), 8
surf.gls, 6, 7
surf.ls, 6, 7

trmat, 6, 7
turtles, 26, 27

warps, 27
wtd_lscp, 4
wtd_lscp (calc_lscp), 12

29

	as_fnc_df
	calcGrpWprime
	calcPoly
	calcWprimeBy
	calc_all_lscps
	calc_lscp
	generate_weights
	krige_surf
	lands.grp.test
	lscp_operations
	plot.kriged_surfaces
	plot.wtd_lscp
	resample_grid
	turtles
	warps
	Index

