Package ‘RmarineHeatWaves’

October 12, 2022

Version 0.17.0

Date 2018-06-04

Title Detect Marine Heat Waves and Marine Cold Spells
Type Package

Maintainer Albertus J. Smit <albertus.smit@gmail.com>
Depends R (>=3.00)

Imports tibble, ggplot2, lubridate, dplyr, stats, utils, zoo, tidyr,
plyr, raster, grid, lazyeval, rlang

Suggests knitr, rmarkdown
VignetteBuilder knitr

Description Given a time series of daily temperatures, the package provides tools
to detect extreme thermal events, including marine heat waves, and to
calculate the exceedances above or below specified threshold values.

It outputs the properties of all detected events and exceedances.

License MIT + file LICENSE

URL https://github.com/ajsmit/RmarineHeatWaves
LazyData TRUE

RoxygenNote 6.0.1

NeedsCompilation no

Author Albertus J. Smit [aut, cre] (R implementation.),
Eric C. J. Oliver [aut] (The brain behind the Python implementation.),
Robert W. Schlegel [ctb] (Graphical and data summaries.)

Repository CRAN
Date/Publication 2018-06-04 17:43:40 UTC

R topics documented:

block_average L. e
detect . . . L e e
event_line e

https://github.com/ajsmit/RmarineHeatWaves

2 block_average
exceedanceo e e 10
geom_flame Lo 12
geom_lolli e 14
lolli_plot. e 16
make_whole e 17
RmarineHeatWaves L 19
sst_Med e e 20
SSUNW_ALL . . . e 20
SStWA L e e, 21

Index 22

block_average Calculate Yearly Means for Event Metrics.

Description

Calculate Yearly Means for Event Metrics.

Usage

block_average(data, x = t, y = temp, report = "full")

Arguments

data Accepts the data returned by the detect function.

X This column is expected to contain a vector of dates as per the specification of
make_whole. If a column headed t is present in the dataframe, this argument
may be ommitted; otherwise, specify the name of the column with dates here.

y This is a column containing the measurement variable. If the column name
differs from the default (i.e. temp), specify the name here.

report Specify either full or partial. Selecting full causes the report to contain
NAs for any years in which no events were detected (except for count, which
will be zero in those years), while partial reports only the years wherein events
were detected. The default is full.

Details

This function needs to be provided with the full output from the detect function. Note that the

yearly averages are calculted only for complete years (i.e. years that start/end part-way through the

year
This

at the beginning or end of the original time series are removed from the calculations).

function differs from the python implementation of the function of the same name (i.e.,

blockAverage, see https://github.com/ecjoliver/marineHeatWaves) in that we only pro-

vide

the ability to calculate the average (or aggregate) event metrics in ’blocks’ of one year, while

the python version allows arbitrary (integer) block sizes.

https://github.com/ecjoliver/marineHeatWaves

block_average 3

Value

The function will return a data frame of the averaged (or aggregate) metrics. It includes the follow-

ing:

year The year over which the metrics were averaged.

temp_mean Seawater temperature for the specified year [deg. C].

temp_min The minimum temperature for the specified year [deg. C].

temp_max The maximum temperature for the specified year [deg. C].

count The number of events per year.

duration The average duration of events per year [days].

int_mean The average event "mean intensity" in each year [deg. C].

int_max The average event "maximum (peak) intensity" in each year [deg. C].
int_var The average event "intensity variability" in each year [deg. C].
int_cum The average event "cumulative intensity" in each year [deg. C x days].
rate_onset Average event onset rate in each year [deg. C / days].

rate_decline Average event decline rate in each year [deg. C/ days].
total_days Total number of events days in each year [days].
total_icum Total cumulative intensity over all events in each year [deg. C x days].

int_max_rel_thresh, int_mean_rel_thresh, int_var_rel_thresh, and int_cum_rel_thresh
are as above except relative to the threshold (e.g., 90th percentile) rather than the seasonal climatol-
ogy.

int_max_abs, int_mean_abs, int_var_abs, and int_cum_abs are as above except as absolute
magnitudes rather than relative to the seasonal climatology or threshold.

int_max_norm and int_mean_norm are as above except units are in multiples of threshold ex-
ceedances, i.e., a value of 1.5 indicates the event intensity (relative to the climatology) was 1.5
times the value of the threshold (relative to climatology, i.e., threshold - climatology.)

Author(s)
Albertus J. Smit, Eric C. J. Oliver

References

Hobday, A.J. et al. (2016), A hierarchical approach to defining marine heatwaves, Progress in
Oceanography, 141, pp. 227-238, doi: 10.1016/j.pocean.2015.12.014

Examples

ts_dat <- make_whole(sst_Med)

res <- detect(ts_dat, climatology_start = "1983-01-01",
climatology_end = "2012-12-31")

out <- block_average(res)

summary(glm(count ~ year, out, family = "poisson”))

Not run:

detect

plot(out$year, out$count, col = "salmon”, pch = 16,
xlab = "Year”, ylab = "Number of events")
lines(out$year, out$count)

End(Not run)

detect

Detect heatwaves and cold-spells.

Description

Applies the Hobday et al. (2016) marine heat wave definition to an input time series of temperature
along with a daily date vector.

Usage

detect(data, doy = doy, x = t, y = temp, climatology_start,
climatology_end, pctile = 90, window_half_width = 5,
smooth_percentile = TRUE, smooth_percentile_width = 31,
clim_only = FALSE, min_duration = 5, join_across_gaps = TRUE,
max_gap = 2, max_pad_length = 3, cold_spells = FALSE)

Arguments

data

doy

A data frame with three columns. In the default setting (i.e. ommitting the
arguments doy, x and y; see immediately below), the data set is expected to
have the headers doy, t and temp. doy is the Julian day running from 1 to 366,
but modified so that the day-of-year (doy) vector for non-leap-years runs 1...59
and then 61...366. For leap years the 60th day is February 29. The t column is
a vector of dates of class Date, while temp is the measured variable (by default
it is assumed to be temperature). Data of the appropriate format are created by
the function make_whole, but your own data can be supplied if they meet the
criteria specified by make_whole.

If a column headed doy is not available, another column with Julian dates can
be supplied. This argument accepts the name of that column. The default name
is, of course, doy.

This column is expected to contain a vector of dates as per the specification of
make_whole. If a column headed t is present in the dataframe, this argument
may be ommitted; otherwise, specify the name of the column with dates here.

This is a column containing the measurement variable. If the column name
differs from the default (i.e. temp), specify the name here.

climatology_start

Required. The start date for the period across which the (varying by day-of-year)
seasonal cycle and extremes threshold are calculated.

detect 5

climatology_end
Required. The end date for the period across which the (varying by day-of-year)
seasonal cycle and extremes threshold are calculated.

pctile Threshold percentile (%) for detection of extreme values. Default is 90th per-
centile. Please see cold_spells for more information about the calculation of
marine cold spells.

window_half_width
Width of sliding window about day-of-year (to one side of the center day-of-
year) used for the pooling of values and calculation of climatology and threshold
percentile. Default is 5 days, which gives a window width of 11 days centered
on the 6th day of the series of 11 days.

smooth_percentile
Boolean switch selecting whether to smooth the climatology and threshold per-
centile timeseries with a moving average of width smooth_percentile. Default
is TRUE.

smooth_percentile_width
Full width of moving average window for smoothing climatology and threshold.
Default is 31 days.

clim_only Choose to calculate only the climatologies and not the events. Default is FALSE.

min_duration Minimum duration for acceptance of detected MHWSs. Default is 5 days.

join_across_gaps
Boolean switch indicating whether to join MHWs which occur before/after a
short gap as specified by max_gap. Default is TRUE.

max_gap Maximum length of gap allowed for the joining of MHWs. Default is 2 days.

max_pad_length Specifies the maximum length of days over which to interpolate (pad) missing
data (specified as NA) in the input temperature time series; i.e., any consecutive
blocks of NAs with length greater than max_pad_length will be left as NA. Set
as an integer. Default is 3 days.

cold_spells Boolean specifying if the code should detect cold events instead of heat events.
Default is FALSE. Please note that the climatological thresholds for cold-spells
are calculated the same as for heatwaves, meaning that pctile should be set
the same regardless if one is calculating heatwaves or cold-spells. For example,
if one wants to calculate heatwaves above the 90th percentile threshold (the
default) one sets pctile = 90. Likewise, if one would like identify the most
intense cold-spells one must also set pctile = 99, even though cold spells are
in fact simply the coldest extreme events in a time series, which statistically
equate to values below the 10th percentile.

Details

1. This function assumes that the input time series consists of continuous daily values with few
missing values. Time ranges which start and end part-way through the calendar year are
supported. The accompanying function make_whole aids in the preparation of a time series
that is suitable for use with detect, although this may also be accomplished by hand’ as long
as the criteria are met as discussed in the documentation to make_whole.

6 detect

2. Itis recommended that a climatology period of at least 30 years is specified in order to capture
decadal thermal periodicities. It is further advised that full the start and end dates for the
climatology period result in full years, e.g. "1982-01-01" to "2011-12-31" or "1982-07-01" to
"2012-06-30"; if not, this may result in an unequal weighting of data belonging with certain
months within a time series.

3. This function supports leap years. This is done by ignoring Feb 29s for the initial calculation
of the climatology and threshold. The values for Feb 29 are then linearly interpolated from
the values for Feb 28 and Mar 1.

4. The calculation of onset and decline rates assumes that the events started a half-day before the
start day and ended a half-day after the end-day. This is consistent with the duration definition
as implemented, which assumes duration = end day - start day + 1. As of version 0.15.7, an
event that is already present at the beginning of a time series, or an event that is still present
at the end of a time series, will report the rate of onset or the rate of decline as NA, as it is
impossible to know what the temperature half a day before or after the start or end of the event
is. This may be a departure from the python marineHeatWaves function.

5. For the purposes of event detection, any missing temperature values not interpolated over
(through optional max_pad_length) will be set equal to the seasonal climatology. This means
they will trigger the end/start of any adjacent temperature values which satisfy the event defi-
nition criteria.

6. If the code is used to detect cold events (coldSpells = TRUE), then it works just as for heat
waves except that events are detected as deviations below the (100 - pctile)th percentile (e.g.,
the 10th instead of 90th) for at least 5 days. Intensities are reported as negative values and
represent the temperature anomaly below climatology.

7. If only the climatology for the time series is required, and not the events themselves, this may
be done by setting clim_only = TRUE.

The original Python algorithm was written by Eric Oliver, Institute for Marine and Antarctic Studies,
University of Tasmania, Feb 2015, and is documented by Hobday et al. (2016). The marine cold
spell option was implemented in version 0.13 (21 Nov 2015) of the Python module as a result of
our preparation of Schlegel et al. (submitted), wherein the cold events receive a brief overview.

Value

The function will return a list of two tibbles (see the tidyverse), clim and event, which are
the climatology and events, respectively. The climatology contains the full time series of daily
temperatures, as well as the the seasonal climatology, the threshold and various aspects of the
events that were detected. The software was designed for detecting extreme thermal events, and the
units specified below reflect that intended purpose. However, the various other kinds of extreme
events may be detected according to the marine heat wave’ specifications, and if that is the case,
the appropriate units need to be determined by the user.

doy Julian day (day-of-year). For non-leap years it runs 1...59 and 61...366, while
leap years run 1...366. This column will be named differently if another name
was specified to the doy argument.

t The date of the temperature measurement. This column will be named differ-
ently if another name was specified to the x argument.

temp If the software was used for the purpose for which it was designed, seawater
temperature [deg. C] on the specified date will be returned. This column will of

detect 7

course be named differently if another kind of measurement was specified to the
y argument.

seas_clim_year Climatological seasonal cycle [deg. C].

thresh_clim_year
Seasonally varying threshold (e.g., 90th percentile) [deg. C].

var_clim_year Seasonally varying variance (standard deviation) [deg. C].

thresh_criterion
Boolean indicating if temp exceeds thresh_clim_year.

duration_criterion
Boolean indicating whether periods of consecutive thresh_criterion are >=
min_duration.

event Boolean indicating if all criteria that define a MHW or MCS are met.
event_no A sequential number indicating the ID and order of occurence of the MHWs or
MCSs.

The events are summarised using a range of event metrics:

index_start Start index of event.

index_stop Stop index of event.

event_no A sequential number indicating the ID and order of the events.
duration Duration of event [days].

date_start Start date of event [date].

date_stop Stop date of event [date].

date_peak Date of event peak [date].

int_mean Mean intensity [deg. C].

int_max Maximum (peak) intensity [deg. C].

int_var Intensity variability (standard deviation) [deg. C].
int_cum Cumulative intensity [deg. C x days].
rate_onset Onset rate of event [deg. C / day].

rate_decline Decline rate of event [deg. C / day].

int_max_rel_thresh, int_mean_rel_thresh, int_var_rel_thresh, and int_cum_rel_thresh
are as above except relative to the threshold (e.g., 90th percentile) rather than the seasonal climatol-

ogy.
int_max_abs, int_mean_abs, int_var_abs, and int_cum_abs are as above except as absolute
magnitudes rather than relative to the seasonal climatology or threshold.

int_max_norm and int_mean_norm are as above except units are in multiples of threshold ex-
ceedances, i.e., a value of 1.5 indicates the event intensity (relative to the climatology) was 1.5
times the value of the threshold (relative to climatology, i.e., threshold - climatology.)

Note that rate_onset and rate_decline will return NA when the event begins/ends on the first/last
day of the time series. This may be particularly evident when the function is applied to large gridded
data sets. Although the other metrics do not contain any errors and provide sensible values, please
take this into account in its interpretation.

8 event_line

Author(s)
Albertus J. Smit, Robert W. Schlegel, Eric C. J. Oliver

References

Hobday, A.J. et al. (2016). A hierarchical approach to defining marine heatwaves, Progress in
Oceanography, 141, pp. 227-238, doi:10.1016/j.pocean.2015.12.014

Schlegel, R. W., Oliver, C. J., Wernberg, T. W., Smit, A. J. (2017). Coastal and offshore co-
occurrences of marine heatwaves and cold-spells. Progress in Oceanography, 151, pp. 189-205,
doi:10.1016/j.pocean.2017.01.004

Examples

ts_dat <- make_whole(sst_WA)

res <- detect(ts_dat, climatology_start = "1983-01-01",
climatology_end = "2012-12-31")

show a portion of the climatology:

res$clim[1:10,]

show some of the heat waves:

res$event[1:5, 1:10]

event_line Create a Line Plot of Marine Heat Waves or Cold Spells.

Description

Creates a graph of warm or cold events as per the second row of Figure 3 in Hobday et al. (2016).

Usage
event_line(data, x = t, y = temp, min_duration = 5, spread = 150,
metric = "int_cum”, start_date, end_date)
Arguments
data The function receives the output from the detect function.
X This column is expected to contain a vector of dates as per the specification of

make_whole. If a column headed t is present in the dataframe, this argument
may be ommitted; otherwise, specify the name of the column with dates here.

y This is a column containing the measurement variable. If the column name
differs from the default (i.e. temp), specify the name here.

min_duration The minimum duration that an event has to for it to qualify as a marine heat
wave or marine cold spell.

spread The the number of days leading and trailing the largest event (as per metric)
detected within the time period specified by start_date and end_date. The
default is 150 days.

event_line 9

metric One of the following options: int_mean, int_max, int_var, int_cum, int_mean_rel_thresh,
int_max_rel_thresh, int_var_rel_thresh, int_cum_rel_thresh, int_mean_abs,
int_max_abs, int_var_abs, int_cum_abs, int_mean_norm, int_max_norm,
rate_onset, rate_decline. Partial name matching is currently not supported
so please specify the metric name precisely. The default is int_cum.

start_date The start date of a period of time within which the largest event (as per metric)
is retrieved and plotted. This may not necessarily correspond to the biggest event
of the specified metric within the entire data set. To plot the biggest event within
the whole time series, make sure start_date and end_date straddle this event,
or simply specify the start and end dates of the full time series given to detect.

end_date The end date of a period of time within which the largest event (as per metric)
is retrieved and plotted. See start_date for additional information.

Value

The function will return a line plot indicating the climatology, threshold and temperature, with the
hot or cold events that meet the specifications of Hobday et al. (2016) shaded in as appropriate. The
plotting of hot or cold events depends on which option is specified in detect. The top event detect
during the selected time period will be visible in a brighter colour. This function differs in use from
geom_flame in that it creates a stand alone figure. The benefit of this being that one must not have
any prior knowledge of ggplot2 to create the figure.

Author(s)

Robert W. Schlegel

References

Hobday, A.J. et al. (2016), A hierarchical approach to defining marine heatwaves, Progress in
Oceanography, 141, pp. 227-238, doi: 10.1016/j.pocean.2015.12.014

Examples

ts_dat <- make_whole(sst_WA)
res <- detect(ts_dat, climatology_start = "1983-01-01",
climatology_end = "2012-12-31")

Not run:
event_line(res, spread = 200, metric = "int_cum”,

start_date = "2010-10-01", end_date = "2011-08-30")

End(Not run)

10

exceedance

exceedance

Detect consecutive days in exceedance of a given threshold.

Description

Detect consecutive days in exceedance of a given threshold.

Usage

exceedance(data, x = t, y = temp, threshold = 20, below = FALSE,
min_duration = 5, join_across_gaps = TRUE, max_gap = 2,
max_pad_length = 3)

Arguments

data

threshold

below

min_duration

A data frame with at least the two following columns: a t column which is a
vector of dates of class Date, and a temp column, which is the temperature on
those given dates. If columns are named differently, their names can be supplied
as x and y (see below). The function will not accurately detect consecutive days
of temperatures in exceedance of the threshold if missing days of data are
not filled in with NA. Data of the appropriate format are created by the function
make_whole, but your own data may be used directly if they meet the given
criteria.

This column is expected to contain a vector of dates as per the specification of
make_whole. If a column headed t is present in the dataframe, this argument
may be ommitted; otherwise, specify the name of the column with dates here.

This is a column containing the measurement variable. If the column name
differs from the default (i.e. temp), specify the name here.

The static threshold used to determine how many consecutive days are in ex-
ceedance of the temperature of interest. Default is 20 degrees.

Default is FALSE. When set to TRUE, consecutive days of temperature below
the threshold variable are calculated. When set to FALSE, consecutive days
above the threshold variable are calculated.

Minimum duration that temperatures must be in exceedance of the threshold
variable. Default is 5 days.

join_across_gaps

max_gap

max_pad_length

A TRUE/FALSE statement that indicates whether or not to join consecutive days
of temperatures in exceedance of the threshold across a small gap between
groups before/after a short gap as specified by max_gap. Default is TRUE.

The maximum length of the gap across which to connect consecutive days in
exceedance of the threshold when join_across_gaps is TRUE.

Specifies the maximum length of days over which to interpolate (pad) missing
data (specified as NA) in the input temperature time series; i.e., any consecutive
blocks of NAs with length greater than max_pad_length will be left as NA. Set
as an integer. Default is 3 days.

exceedance 11

Details

1. This function assumes that the input time series consists of continuous daily temperatures,
with few missing values. The accompanying function make_whole aids in the preparation of a
time series that is suitable for use with exceedance, although this may also be accomplished
"by hand’ as long as the criteria are met as discussed in the documentation to make_whole.

2. Future versions seek to accomodate monthly and annual time series, too.

3. The calculation of onset and decline rates assumes that exceedance of the threshold started
a half-day before the start day and ended a half-day after the end-day. This is consistent with
the duration definition as implemented, which assumes duration = end day - start day + 1.

4. For the purposes of exceedance detection, any missing temperature values not interpolated
over (through optional max_pad_length) will remain as NA. This means they will trigger the
end of an exceedance if the adjacent temperature values are in exceedance of the threshold.

5. If the function is used to detect consecutive days of temperature under the given theshold,
these temperatures are then taken as being in exceedance below the threshold as there is no
antonym in the English language for ’exceedance’.

This function is based largely on the detect function found in this package, which was ported from
the Python algorithm that was written by Eric Oliver, Institute for Marine and Antarctic Studies,
University of Tasmania, Feb 2015, and is documented by Hobday et al. (2016).

Value

The function will return a list of two components. The first being threshold, which shows the
daily temperatures and on which specific days the given threshold was exceeded. The second
component of the list is exceedance, which shows a medley of statistics for each discrete group of
days in exceedance of the given threshold. Note that any additional columns left in the data frame
given to this function will be output in the threshold component of the output. For example, if one
uses make_whole to prepare a time series for analysis and leaves in the doy column, this column
will appear in the output.

The information shown in the threshold component is:

t The date of the temperature measurement. This variable may named differently
if an alternative name is supplied to the function’s x argument.

temp Temperature on the specified date [deg. C]. This variable may named differently
if an alternative name is supplied to the function’s y argument.

thresh The static threshold chosen by the user [deg. C].

thresh_criterion
Boolean indicating if temp exceeds threshold.

duration_criterion
Boolean indicating whether periods of consecutive thresh_criterion are >=
min_duration.

exceedance Boolean indicting if all criteria that define a discrete group in exceedance of the
threshold are met.

exceedance_no A sequential number indicating the ID and order of occurence of exceedances.

The individual exceedances are summarised using the following metrics:

12

index_start
index_stop

exceedance_no

duration
date_start
date_stop
date_peak
int_mean
int_max
int_var
int_cum
rate_onset

rate_decline

geom_flame

Row number on which exceedance starts.
Row number on which exceedance stops.

The same sequential number indicating the ID and order of the exceedance as
found in the threshold component of the output list.

Duration of exceedance [days].

Start date of exceedance [date].

Stop date of exceedance [date].

Date of exceedance peak [date].

Mean intensity [deg. C].

Maximum (peak) intensity [deg. C].

Intensity variability (standard deviation) [deg. C].
Cumulative intensity [deg. C x days].

Onset rate of exceedance [deg. C / day].

Decline rate of exceedance [deg. C / day].

int_max_abs, int_mean_abs, int_var_abs, and int_cum_abs are as above except as absolute
magnitudes rather than relative to the threshold.

Author(s)

Robert W. Schlegel, Albertus J. Smit

Examples

ts_dat <- make_whole(sst_WA)

res <- exceedance(ts_dat, threshold = 25)
show first ten days of daily data:
res$threshold[1:10,]

show first five exceedances:
res$exceedance[1:5,]

geom_flame

Create 'Flame’ Ploygons.

Description

This function will create polygons between two lines. If given a temperature and theshold time
series, like that produced by detect, the output will meet the specifications of Hobday et al. (2016)
shown as ’flame polygons.” If one wishes to plot polygons below a given threshold, and not above,
switch the values being fed to the y and y2 aesthetics. This function differs in use from event_line
in that it must be created as a ggplot geom’ object. The benefit of this being that one may add
additional information to the figure as geom layers to ggplot2 graphs as may be necessary.

geom_flame

Usage

13

geom_flame(mapping = NULL, data = NULL, stat = "identity”,
position = "identity"”, ..., na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE)

Arguments

mapping

data

stat

position

na.rm

show. legend

inherit.aes

Aesthetics

Set of aesthetic mappings created by aes() or aes_(). If specified and in-
herit.aes = TRUE (the default), it is combined with the default mapping at the
top level of the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return value
must be a data. frame, and will be used as the layer data.

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

Logical. Should this layer be included in the legends? NA, the default, includes
if any aesthetics are mapped. FALSE never includes, and TRUE always includes.
It can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom_flame understands the following aesthetics (required aesthetics are in bold):

* X
Yy

o y2

* colour

e fill

* size

e alpha

e linetype

14 geom_lolli

Author(s)

Robert W. Schlegel

References

Hobday, A.J. et al. (2016), A hierarchical approach to defining marine heatwaves, Progress in
Oceanography, 141, pp. 227-238, doi: 10.1016/j.pocean.2015.12.014

See Also

event_line for a non-ggplot2 based flame function.

Examples

ts_dat <- make_whole(sst_WA)

res <- detect(ts_dat, climatology_start = "1983-01-01",
climatology_end = "2012-12-31")

mhw <- res$clim

mhw <- mhw[10580:10690,]

Not run:
require(ggplot2)
ggplot(mhw, aes(x = t, y = temp)) +
geom_flame(aes(y2 = thresh_clim_year)) +
geom_text(aes(x = as.Date("2011-02-01"), y = 28,
label = "That's not a heatwave.\nThis, is a heatwave."”)) +
xlab("Date"”) + ylab(expression(paste("Temperature ["”, degree, "C1")))

End(Not run)

geom_lolli Visualise a Timeline of Several Event Metrics as 'Lollipops’.

Description

The function will return a graph of the intensity of the selected metric along the *y*-axis versus
a time variable along the *x*-axis. The number of top events (n) from the chosen metric may be
highlighted in a brighter colour with the aesthetic value colour.n. This function differs in use from
lolli_plot in that it must be created as a ggplot2 *geom’ object. The benefit of this being that one
may add additional information layer by layer to the figure as geoms as necessary.

Usage

geom_lolli(mapping = NULL, data
show.legend = NA, inherit.aes

NULL, ..., n =1, na.rm = FALSE,
TRUE)

geom_lolli

Arguments

mapping

data

na.rm

show. legend

inherit.aes

Aesthetics

15

Set of aesthetic mappings created by aes() or aes_(). If specified and in-
herit.aes = TRUE (the default), it is combined with the default mapping at the
top level of the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return value
must be a data. frame, and will be used as the layer data.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

The number of top events to highlight. Default is 1. This parameter has no effect
if colour.n is set to NA outside of aes().

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

Logical. Should this layer be included in the legends? NA, the default, includes
if any aesthetics are mapped. FALSE never includes, and TRUE always includes.
It can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom_lolli understands the following aesthetics (required aesthetics are in bold):

X
°y

e alpha

* color

e linetype
* size

* shape

* stroke

e fill

* colour.n: While this value may be used as an aesthetic, it also works as a parameter for
this function. If one chooses not to highlight any events, use colour.n = NA outside of aes().
One may also provide a non-static value to colour . na but remember that one may not provide
multiple continuous or discrete scales to a single ggplot2 object. Therefore, if one provides a
continuous value to aes(colour), the values supplied to colour.n must be discrete. ggplot2
will attempt to do this automatically.

16 lolli_plot

Author(s)

Robert W. Schlegel

See Also

lolli_plot for a non-geom based lolliplot function.

Examples

ts_dat <- make_whole(sst_NW_Atl)

with defaults:

res <- detect(ts_dat, climatology_start = "1983-01-01",
climatology_end = "2012-12-31")

mhw <- res$event

Not run:

require(lubridate)

Height of lollis represent event durations and their colours

are mapped to the events' cumulative intensity:

ggplot(mhw, aes(x = mhw$date_peak, y = mhw$duration)) +
geom_lolli(n = @, shape = 20, aes(colour = mhw$int_cum), colour.n = NA) +
scale_color_distiller(palette = "Spectral”, name = "Cumulative \nintensity”) +
xlab("Date") + ylab("Event duration [days]")

Height of lollis represent event durations and the top three (longest)

lollis are highlighted in red:

ggplot(mhw, aes(x = mhw$date_peak, y = mhw$duration)) +
geom_lolli(n = 3, shape = 20, colour.n = "red") +
scale_color_distiller(palette = "Spectral”, name = "Cumulative \nintensity”) +
xlab("Date"”) + ylab("Event duration [days]")

End(Not run)

lolli_plot Create a Timeline of Selected Event Metrics.

Description

Visualise a timeline of several event metrics as ’lollipop’ graphs.

Usage

lolli_plot(data, metric = "int_max", event_count = 3,
xaxis = "date_start")

make_whole 17

Arguments
data Output from the detect function.
metric One of int_mean, int_max, int_cum and duration. Default is int_cum.

event_count The number of top events to highlight. Default is 3.

Xaxis One of event_no, date_start or date_peak. Default is date_start.

Value

The function will return a graph of the intensity of the selected metric along the y-axis versus either
t or event_no. The number of top events as per event_count will be highlighted in a brighter
colour. This function differs in use from geom_lolli in that it creates a stand alone figure. The
benefit of this being that one must not have any prior knowledge of ggplot2 to create the figure.

Author(s)
Albertus J. Smit and Robert W. Schlegel

Examples

ts_dat <- make_whole(sst_NW_Atl)
res <- detect(ts_dat, climatology_start = "1983-01-01",
climatology_end = "2012-12-31")

Not run:
lolli_plot(res, metric = "int_cum”, event_count = 3, xaxis = "date_peak")

End(Not run)

make_whole Constructs a Continuous, Uninterrupted Time Series of Temperatures.

Description

Takes a series of dates and temperatures, and if irregular (but ordered), inserts missing dates and
fills correpsonding temperatures with NAs.

Usage

make_whole(data, x = t, y = temp)

Arguments

data A data frame with columns for date and temperature data. Ordered daily data are
expected, and although missing values (NA) can be accommodated, the function
is only recommended when NAs occur infrequently, preferably at no more than
3 consecutive days.

18 make_whole

X A column with the daily time vector (see details). For backwards compatibility,
the column is named t by default.

y A column with the response vector. RmarineHeatWaves version <= 0.15.9 as-
sumed that this would be daily seawater temperatures, but as of version 0.16.0
it may be any arbitrary measurement taken at a daily frequency. The default re-
mains temperature, and the default column name is therefore temp, again hope-
fully ensuring backwards compatibility.

Details

Upon import, the package uses ‘zoo‘ and ‘lubridate‘ to process the input date and temperature data.
It reads in daily data with the time vector specified as either POSIXct or Date (e.g. "1982-01-01
02:00:00" or "1982-01-01"). The data may be an irregular time series, but date must be ordered. The
function constructs a complete time series from the start date to the end date, and fills in the regions
in the time series where temperature data are missing, with NAs in the temperature vector. There
must only be one temperature value per day otherwise the function will fail. It is up to the user to
calculate daily data from sub-daily measurements. Leap years are automatically accommodated by

k] >

700 .

This function can handle some of missing days, but this is not a licence to actually use these data for
the detection of anomalous thermal events. Hobday et al. (2016) recommend gaps of no more than
3 days, which may be adjusted by setting the max_pad_length argument of the detect function.
The longer and more frequent the gaps become the lower the fidelity of the annual climatology and
threshold that can be calculated, which will not only have repercussions for the accuracy at which
the event metrics can be determined, but also for the number of events that can be detected.

It is recommended that a climatology period of at least 30 years is specified in order to capture any
decadal thermal periodicities.

Value

The function will return a data frame with three columns. The column headed doy (day-of-year) is
the Julian day running from 1 to 366, but modified so that the day-of-year series for non-leap-years
runs 1...59 and then 61...366. For leap years the 60th day is February 29. See the example, below.
The other two columns take the names of x and y, if supplied, or it will be t and temp in case the
default values were used. The x (or t) column is a series of dates of class Date, while y (or temp) is
the measured variable. This time series will be uninterrupted and continuous daily values between
the first and last dates of the input data.

Author(s)
Smit, A. J.

Examples

require(dplyr); require(tidyr); require(lubridate)

ts_dat <- make_whole(sst_WA) # default columns "t" and "temp"”, in that order
clim_start <- "1983-01-01"

clim_end <- "2012-12-31"

ts_dat %>%

filter(t >= clim_start & t <= clim_end) %>%

RmarineHeatWaves 19

mutate(t = year(t)) %>%
spread(t, temp) %>%
filter(doy >= 55 & doy <= 65)

RmarineHeatWaves RmarineHeatWaves.

Description

This package is an R implementation of the python script marineHeatWaves (https://github.
com/ecjoliver/marineHeatWaves) written by Eric C. J. Oliver as part of the marine heat waves
definition by Hobday et al. (2016).

Details

Although the title of the package refers to marine heat waves (MHW), it is equally capable of
detecting marine cold spells (MCS). This functionality to detect cold events is also present in the
python package, where it was implemented as a result of the publication Schlegel et al. (2017)
that discusses the quantification and detection of anomalously cold events. As of release 0.16.0,
the detect function may also be applied to time series of other natural phenomena which one might
want to express in terms of the summary metrics outlined in the paper by Hobday et al. (2016).

The main function is the detection function detect which takes as input a time series of tem-
perature (and a corresponding series of dates) and outputs a set of detected MHWs or MCS, as
well as the climatological (varying by day-of-year) seasonal cycle and extremes threshold. There
are various helper functions to fascilitate developing an uninterrupted time series of temperatures
(e.g. make_whole) and some options to produce graphical summaries and representations of the
detected events such as event_line and 1lolli_plot, or the ggplot2 equivalents, geom_flame and
geom_lolli.

This package is demonstrated by applying the MHW definition to observed SST records and show-
ing how it identifies three historical MHWs: the 2011 Western Australia event, the 2012 Northwest
Atlantic event and the 2003 Mediterranean event. These data are included herewith.

One may also use the exceedance function to calculate consecutive days above or below a given
static threshold. The output of this function is similar to detect.

Author(s)

Albertus J. Smit <<albertus.smit@gmail.com>>, Robert W. Schlegel, Eric C. J. Oliver

References

Hobday, A. J. et al. (2016), A hierarchical approach to defining marine heatwaves. Progress in
Oceanography, 141, pp. 227-238, <DOI:10.1016/j.pocean.2015.12.014> (official citation for this
package).

Schlegel, R. W., Oliver, E. C. J., Wernberg, T. W., Smit, A. J. (2017) Coastal and offshore co-
occurrences of marine heatwaves and cold-spells. Progress in Oceanography, 151, pp. 189-205,
<DOI:10.1016/j.pocean.2017.01.004>

https://github.com/ecjoliver/marineHeatWaves
https://github.com/ecjoliver/marineHeatWaves

20 sst NW_Atl

sst_Med Optimally Interpolated 0.25 degree SST for the Mediterranean region.

Description
A dataset containing the sea surface temperature (in degrees Celsius) and date for the Mediterranean
region from 1982-01-01 to 2014-12-31.

Usage

sst_Med

Format

A data frame with 12053 rows and 2 variables:

t date, as POSIXct
temp SST, in degrees Celsius ...

Source

https://www.ncdc.noaa.gov/oisst

sst_NW_Atl Optimally Interpolated 0.25 degree SST for the NW Atlantic region.

Description
A dataset containing the sea surface temperature (in degrees Celsius) and date for the Northwest
Atlantic region from 1982-01-01 to 2014-12-31.

Usage
sst_NW_Atl

Format
A data frame with 12053 rows and 2 variables:

t date, as POSIXct
temp SST, in degrees Celsius ...

Source

https://www.ncdc.noaa.gov/oisst

https://www.ncdc.noaa.gov/oisst
https://www.ncdc.noaa.gov/oisst

sst. WA 21

sst_WA Optimally Interpolated 0.25 degree SST for the Western Australian re-
gion.

Description
A dataset containing the sea surface temperature temperature (in degrees Celsius) and date for the
Western Australian region for the period 1982-01-01 to 2014-12-31.

Usage
sst_WA

Format
A data frame with 12053 rows and 2 variables:

t date, as POSIXct
temp SST, in degrees Celsius ...

Source

https://www.ncdc.noaa.gov/oisst

https://www.ncdc.noaa.gov/oisst

Index

+ datasets
sst_Med, 20
sst_NW_At1, 20
sst_WA, 21

block_average, 2
detect, 2,4,8, 9, 12, 17-19

event_line, 8, 12, 14, 19
exceedance, 10, /9

geom_flame, 9, 12, 19
geom_lolli, 14, 17, 19

layer, 13,15
lolli_plot, 14, 16, 16, 19

make_whole, 4, 5, 10, 11,17, 19

RmarineHeatWaves, 19
RmarineHeatWaves-package
(RmarineHeatWaves), 19

sst_Med, 20
sst_NW_At1, 20
sst_WA, 21

22

	block_average
	detect
	event_line
	exceedance
	geom_flame
	geom_lolli
	lolli_plot
	make_whole
	RmarineHeatWaves
	sst_Med
	sst_NW_Atl
	sst_WA
	Index

