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back_period Offset a vector prices or quantities

Description

For each product, compute either the position of the previous period (back period), or the position
of the first period (base period). Useful when price information is stored in a table.

Usage

back_period(period, product = gl(1, length(period)), match_first = TRUE)

base_period(period, product = gl(1, length(period)), match_first = TRUE)
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Arguments

period A factor, or something that can be coerced into one, that gives the time period
for each transaction. The ordering of time periods follows the levels of period
to agree with cut().

product A factor, or something that can be coerced into one, that gives the product iden-
tifier for each transaction. The default is to assume that all transactions are for
the same product.

match_first Should products in the first period match with themselves (the default)?

Value

Both functions return a numeric vector of indices for the back/base periods. With back_period(),
for all periods after the first, the resulting vector gives the location of the corresponding product in
the previous period. With base_period(), the resulting vector gives the location of the correspond-
ing product in the first period. The locations are unchanged for the first time period if match_first
= TRUE, NA otherwise.

Note

By definition, there must be at most one transaction for each product in each time period to de-
termine a back/base period. If multiple transactions correspond to a period-product pair, then the
back/base period at a point in time is always the first position for that product in the previous period.

See Also

outliers for common methods to detect outliers for price relatives.

rs_pairs in the rsmatrix package for making sales pairs.

Examples

df <- data.frame(
price = 1:6,
product = factor(c("a", "b")),
period = factor(c(1, 1, 2, 2, 3, 3))

)

with(df, back_period(period, product))

# Make period-over-period price relatives

with(df, price / price[back_period(period, product)])

# Make fixed-base price relatives

with(df, price / price[base_period(period, product)])

# Change the base period with relevel()

with(df, price / price[base_period(relevel(period, "2"), product)])
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# Warning is given if the same product has multiple prices
# at any point in time

with(df, back_period(period))

balanced Balanced operator

Description

Makes a function balance the removal of NAs across multiple input vectors.

Usage

balanced(f, ...)

Arguments

f A function.

... Deprecated. Additional arguments to f that should not be balanced.

Value

A function like f with a new argument na.rm. If na.rm = TRUE then complete.cases() is used to
remove missing values across all inputs prior to calling f.

See Also

Other operators: grouped(), quantity_index()

Examples

p1 <- price6[[3]]
p0 <- price6[[2]]
q1 <- quantity6[[3]]
q0 <- quantity6[[2]]

# Balance missing values for a Fisher index

fisher <- balanced(fisher_index)
fisher(p1, p0, q1, replace(q0, 3, NA), na.rm = TRUE)
fisher_index(p1[-3], p0[-3], q1[-3], q0[-3])

# Operators can be combined, but some care may be needed

x <- 1:6
w <- c(1:5, NA)
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f <- factor(rep(letters[1:2], each = 3))

grouped(\(x, w) balanced(fisher_mean)(x, w, na.rm = TRUE))(x, w, group = f)
balanced(grouped(fisher_mean))(x, w, group = f, na.rm = TRUE)

contributions Percent-change contributions

Description

Calculate additive percent-change contributions for generalized-mean price indexes, and indexes
that nest two levels of generalized means consisting of an outer generalized mean and two inner
generalized means (e.g., the Fisher index).

Usage

contributions(r)

arithmetic_contributions(x, w = NULL)

geometric_contributions(x, w = NULL)

harmonic_contributions(x, w = NULL)

nested_contributions(r1, r2, t = c(1, 1))

nested_contributions2(r1, r2, t = c(1, 1))

fisher_contributions(x, w1 = NULL, w2 = NULL)

fisher_contributions2(x, w1 = NULL, w2 = NULL)

Arguments

r A finite number giving the order of the generalized mean.

x A strictly positive numeric vector.

w, w1, w2 A strictly positive numeric vector of weights, the same length as x. The default
is to equally weight each element of x.

r1 A finite number giving the order of the outer generalized mean.

r2 A pair of finite numbers giving the order of the inner generalized means.

t A pair of strictly positive weights for the inner generalized means. The default
is equal weights.
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Details

The function contributions() is a simple wrapper for transmute_weights(r, 1)() to calculate
(additive) percent-change contributions for a price index based on a generalized mean of order r. It
returns a function to compute a vector v(x, w) such that

generalized_mean(r)(x, w) - 1 == sum(v(x, w))

This generalizes the approach for calculating percent-change contributions in section 4.2 of Balk
(2008) using the method by Martin (2021). The arithmetic_contributions(), geometric_contributions()
and harmonic_contributions() functions cover the most important cases (i.e., r = 1, r = 0, and
r = -1).

The nested_contributions() and nested_contributions2() functions are the analog of contributions()
for an index based on a nested generalized mean with two levels, like a Fisher index. They return a
function that calculates the contribution of each element of x when a generalized mean of order r1
aggregates two generalized-mean indexes of x with orders r2, and weights w1 and w2.

Unlike the case of a generalized-mean index, there are several ways to make contributions for an
index based on nested generalized means. nested_contributions() uses a generalization of the
algorithm in section 6 of Reinsdorf et al. (2002) by Martin (2021). nested_contributions2()
generalizes the van IJzeren decomposition for the Fisher index (Balk, 2008, section 4.2.2) by con-
structing a weighted average of the contributions for both of the inner means with the approach by
Martin (2021). In most cases the results are broadly similar.

The fisher_contributions() and fisher_contributions2() functions correspond to nested_contributions(0,
c(1, -1))() and nested_contributions2(0, c(1, -1))(), and are appropriate for calculating
percent-change contributions for a Fisher index.

Value

contributions() returns a function:

function(x, w = NULL){...}

This computes the additive contribution for each element of x in an index based on the generalized
mean of order r with weights w.

nested_contributions() and nested_contributions2() return a function:

function(x, w1 = NULL, w2 = NULL){...}

This computes the additive contribution for each element of x when a generalized mean of order r1
aggregates a generalized-mean index of order r2[1] with weights w1 and a generalized-mean index
of order r2[2] with weights w2.

arithmetic_contributions(), geometric_contributions(), and harmonic_contributions()
each return a numeric vector, the same length as x, giving the contribution of each element of x in
an arithmetic, geometric, or harmonic index.

fisher_contributions() and fisher_contributions2() each return a numeric vector, the same
length as x, giving the contribution of each element of x when a geometric mean aggregates an arith-
metic mean of x with weights w1 and a harmonic mean of x with weights w2.
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References

Balk, B. M. (2008). Price and Quantity Index Numbers. Cambridge University Press.

Hallerbach, W. G. (2005). An alternative decomposition of the Fisher index. Economics Letters,
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Martin, S. (2021). A note on general decompositions for price indexes. Prices Analytical Series,
Statistics Canada catalogue no. 62F0014M. Statistics Canada, Ottawa.

Reinsdorf, M. B., Diewert, W. E., and Ehemann, C. (2002). Additive decompositions for Fisher,
Törnqvist and geometric mean indexes. Journal of Economic and Social Measurement, 28(1-2):51–
61.

Webster, M. and Tarnow-Mordi, R. C. (2019). Decomposing multilateral price indexes into the
contributions of individual commodities. Journal of Official Statistics, 35(2):461–486.

See Also

transmute_weights() for the underlying implementation.

Examples

x <- 2:3

#---- Contributions for a geometric index ----

geometric_mean(x) - 1 # percent change in the Jevons index

geometric_contributions(x)

all.equal(geometric_mean(x) - 1, sum(geometric_contributions(x)))

# This works by first transmuting the weights in the geometric mean
# into weights for an arithmetic mean, then finding the contributions
# to the percent change

transmute_weights(0, 1)(x) * (x - 1)

# Not the only way to calculate contributions

transmute2 <- function(x) {
m <- geometric_mean(x)
(m - 1) / log(m) * log(x) / (x - 1) / length(x)

}

transmute2(x) * (x - 1) # not proportional to the method above
all.equal(sum(transmute2(x) * (x - 1)), geometric_mean(x) - 1)

# But these "transmuted" weights don't recover the geometric mean!
# Not a particularly good way to calculate contributions

isTRUE(all.equal(
arithmetic_mean(x, transmute2(x)),
geometric_mean(x)
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))

# There are infinitely many ways to calculate contributions, but the
# weights from transmute_weights(0, 1)() are the *unique* weights that
# recover the geometric mean

perturb <- function(w, e) {
w + c(e, -e) / (x - 1)

}

perturb(transmute2(x), 0.1) * (x - 1)
all.equal(

sum(perturb(transmute2(x), 0.1) * (x - 1)),
geometric_mean(x) - 1

)
isTRUE(all.equal(

arithmetic_mean(x, perturb(transmute2(x), 0.1)),
geometric_mean(x)

))

#---- Contributions for a Fisher index ----

p1 <- price6[[2]]
p0 <- price6[[1]]
q1 <- quantity6[[2]]
q0 <- quantity6[[1]]

# Percent-change contributions for the Fisher index in section 6 of
# Reinsdorf et al. (2002)

(con <- fisher_contributions(
p1 / p0,
index_weights("Laspeyres")(p0, q0),
index_weights("Paasche")(p1, q1)

))

all.equal(sum(con), fisher_index(p1, p0, q1, q0) - 1)

# Not the only way

(con2 <- fisher_contributions2(
p1 / p0,
index_weights("Laspeyres")(p0, q0),
index_weights("Paasche")(p1, q1)

))

all.equal(sum(con2), fisher_index(p1, p0, q1, q0) - 1)

# The same as the van IJzeren decomposition in section 4.2.2 of
# Balk (2008)

Qf <- quantity_index(fisher_index)(q1, q0, p1, p0)
Ql <- quantity_index(laspeyres_index)(q1, q0, p0)



contributions 9

wl <- scale_weights(index_weights("Laspeyres")(p0, q0))
wp <- scale_weights(index_weights("HybridPaasche")(p0, q1))

(Qf / (Qf + Ql) * wl + Ql / (Qf + Ql) * wp) * (p1 / p0 - 1)

# Similar to the method in section 2 of Reinsdorf et al. (2002),
# although those contributions aren't based on weights that sum to 1

Pf <- fisher_index(p1, p0, q1, q0)
Pl <- laspeyres_index(p1, p0, q0)

(1 / (1 + Pf) * wl + Pl / (1 + Pf) * wp) * (p1 / p0 - 1)

# Also similar to the decomposition by Hallerbach (2005), noting that
# the Euler weights are close to unity

Pp <- paasche_index(p1, p0, q1)

(0.5 * sqrt(Pp / Pl) * wl + 0.5 * sqrt(Pl / Pp) * wp) * (p1 / p0 - 1)

#---- Contributions for other types of indexes ----

# A function to get contributions for any superlative quadratic mean of
# order 'r' index

superlative_contributions <- function(r) {
nested_contributions(0, c(r / 2, -r / 2))

}

# Can be used to decompose the implict Walsh index

superlative_contributions(1)(
p1 / p0,
index_weights("Laspeyres")(p0, q0),
index_weights("Paasche")(p1, q1)

)

# Works for other types of indexes, like the harmonic
# Laspeyres Paasche index

hlp_contributions <- nested_contributions(-1, c(1, -1))
hlp_contributions(

p1 / p0,
index_weights("Laspeyres")(p0, q0),
index_weights("Paasche")(p1, q1)

)

# Or the AG mean index (tau = 0.25)

agmean_contributions <- nested_contributions(1, c(0, 1), c(0.25, 0.75))
agmean_contributions(

p1 / p0,
index_weights("Laspeyres")(p0, q0),
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index_weights("Laspeyres")(p0, q0)
)

# Or the Balk-Walsh index

bw_contributions <- nested_contributions(0, c(0.5, -0.5))
bw_contributions(p1 / p0)

extended_mean Extended mean

Description

Calculate a generalized logarithmic mean / extended mean.

Usage

extended_mean(r, s)

generalized_logmean(r)

logmean(a, b, tol = .Machine$double.eps^0.5)

Arguments

r, s A finite number giving the order of the generalized logarithmic mean / extended
mean.

a, b A strictly positive numeric vector.

tol The tolerance used to determine if a == b.

Details

The function extended_mean() returns a function to compute the component-wise extended mean
of a and b of orders r and s. See Bullen (2003, p. 393) for a definition. This is also called the
difference mean, Stolarsky mean, or extended mean-value mean.

The function generalized_logmean() returns a function to compute the component-wise gen-
eralized logarithmic mean of a and b of order r. See Bullen (2003, p. 385) for a definition, or
https://en.wikipedia.org/wiki/Stolarsky_mean. The generalized logarithmic mean is a spe-
cial case of the extended mean, corresponding to extended_mean(r, 1)(), but is more commonly
used for price indexes.

The function logmean() returns the ordinary component-wise logarithmic mean of a and b, and
corresponds to generalized_logmean(1)().

Both a and b should be strictly positive. This is not enforced, but the results may not make sense
when the generalized logarithmic mean / extended mean is not defined. The usual recycling rules
apply when a and b are not the same length.

https://en.wikipedia.org/wiki/Stolarsky_mean
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By definition, the generalized logarithmic mean / extended mean of a and b is a when a == b. The
tol argument is used to test equality by checking if abs(a - b) <= tol. The default value is the
same as all.equal(). Setting tol = 0 tests for exact equality, but can give misleading results when
a and b are computed values. In some cases it’s useful to multiply tol by a scale factor, such as
max(abs(a), abs(b)). This often doesn’t matter when making price indexes, however, as a and b
are usually around 1.

Value

generalized_logmean() and extended_mean() return a function:

function(a, b, tol = .Machine$double.eps^0.5){...}

This computes the component-wise generalized logarithmic mean of order r, or the extended mean
of orders r and s, of a and b.

logmean() returns a numeric vector, the same length as max(length(a), length(b)), giving the
component-wise logarithmic mean of a and b.

Note

generalized_logmean() can be defined on the extended real line, so that r = -Inf / Inf returns
pmin()/pmax(), to agree with the definition in, e.g., Bullen (2003). This is not implemented, and r
must be finite as in the original formulation by Stolarsky (1975).

References

Balk, B. M. (2008). Price and Quantity Index Numbers. Cambridge University Press.

Bullen, P. S. (2003). Handbook of Means and Their Inequalities. Springer Science+Business Me-
dia.

Stolarsky, K. B. (1975). Generalizations of the Logarithmic Mean. Mathematics Magazine, 48(2):
87-92.

See Also

transmute_weights() uses the extended mean to turn a generalized mean of order r into a gener-
alized mean of order s.

Other means: generalized_mean(), lehmer_mean(), nested_mean()

Examples

x <- 8:5
y <- 1:4

#---- Comparing logarithmic means and generalized means ----

# The arithmetic and geometric means are special cases of the
# generalized logarithmic mean

all.equal(generalized_logmean(2)(x, y), (x + y) / 2)
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all.equal(generalized_logmean(-1)(x, y), sqrt(x * y))

# The logarithmic mean lies between the arithmetic and geometric means
# because the generalized logarithmic mean is increasing in r

all(logmean(x, y) < (x + y) / 2) &
all(logmean(x, y) > sqrt(x * y))

# The harmonic mean cannot be expressed as a logarithmic mean, but can
# be expressed as an extended mean

all.equal(extended_mean(-2, -1)(x, y), 2 / (1 / x + 1 / y))

# The quadratic mean is also a type of extended mean

all.equal(extended_mean(2, 4)(x, y), sqrt(x^2 / 2 + y^2 / 2))

# As are heronian and centroidal means

all.equal(
extended_mean(0.5, 1.5)(x, y),
(x + sqrt(x * y) + y) / 3

)
all.equal(

extended_mean(2, 3)(x, y),
2 / 3 * (x^2 + x * y + y^2) / (x + y)

)

#---- Approximating the logarithmic mean ----

# The logarithmic mean can be approximated as a convex combination of
# the arithmetic and geometric means that gives more weight to the
# geometric mean

approx1 <- 1 / 3 * (x + y) / 2 + 2 / 3 * sqrt(x * y)
approx2 <- ((x + y) / 2)^(1 / 3) * (sqrt(x * y))^(2 / 3)

approx1 - logmean(x, y) # always a positive approximation error
approx2 - logmean(x, y) # a negative approximation error

# A better approximation

correction <- (log(x / y) / pi)^4 / 32
approx1 / (1 + correction) - logmean(x, y)

#---- Some identities ----

# A useful identity for turning an additive change into a proportionate
# change

all.equal(logmean(x, y) * log(x / y), x - y)

# Works for other orders, too
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r <- 2

all.equal(
generalized_logmean(r)(x, y)^(r - 1) * (r * (x - y)),
(x^r - y^r)

)

# Some other identities

all.equal(
generalized_logmean(-2)(1, 2),
(harmonic_mean(1:2) * geometric_mean(1:2)^2)^(1 / 3)

)

all.equal(
generalized_logmean(0.5)(1, 2),
(arithmetic_mean(1:2) + geometric_mean(1:2)) / 2

)

all.equal(
logmean(1, 2),
geometric_mean(1:2)^2 * logmean(1, 1 / 2)

)

#---- Integral representations of the logarithmic mean ----

logmean(2, 3)

integrate(function(t) 2^(1 - t) * 3^t, 0, 1)$value
1 / integrate(function(t) 1 / (2 * (1 - t) + 3 * t), 0, 1)$value

factor_weights Factor weights

Description

Factor weights to turn the generalized mean of a product into the product of generalized means.
Useful for price-updating the weights in a generalized-mean index.

Usage

factor_weights(r)

update_weights(x, w = NULL)
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Arguments

r A finite number giving the order of the generalized mean.

x A strictly positive numeric vector.

w A strictly positive numeric vector of weights, the same length as x. The default
is to equally weight each element of x.

Details

The function factor_weights(r) returns a function to compute weights u(x, w) such that

generalized_mean(r)(x * y, w) ==
generalized_mean(r)(x, w) * generalized_mean(r)(y, u(x, w))

This generalizes the result in section C.5 of Chapter 9 of the PPI Manual for chaining the Young
index, and gives a way to chain generalized-mean price indexes over time.

Factoring weights with r = 1 sometimes gets called price-updating weights; update_weights()
simply calls factor_weights(1)().

Factoring weights return a value that is the same length as x, so any missing values in x or the
weights will return NA. Unless all values are NA, however, the result for will still satisfy the above
identity when na.rm = TRUE.

Value

factor_weights() return a function:

function(x, w = NULL){...}

update_weights() returns a numeric vector the same length as x.

References

ILO, IMF, OECD, Eurostat, UN, and World Bank. (2004). Producer Price Index Manual: Theory
and Practice. International Monetary Fund.

See Also

generalized_mean() for the generalized mean.

grouped() to make these functions operate on grouped data.

Other weights functions: scale_weights(), transmute_weights()



geks 15

Examples

x <- 1:3
y <- 4:6
w <- 3:1
# Factor the harmonic mean by chaining the calculation

harmonic_mean(x * y, w)
harmonic_mean(x, w) * harmonic_mean(y, factor_weights(-1)(x, w))

# The common case of an arithmetic mean

arithmetic_mean(x * y, w)
arithmetic_mean(x, w) * arithmetic_mean(y, update_weights(x, w))

# In cases where x and y have the same order, Chebyshev's
# inequality implies that the chained calculation is too small

arithmetic_mean(x * y, w) >
arithmetic_mean(x, w) * arithmetic_mean(y, w)

geks GEKS index

Description

Calculate a generalized inter-temporal GEKS price index over a rolling window, as described in
chapter 7 of Balk (2008), by Ivancic et al. (2011), and in chapter 10 of the CPI manual (2020).

Usage

geks(f, r = 0)

tornqvist_geks(
p,
q,
period,
product,
window = nlevels(period),
n = window - 1L,
na.rm = FALSE

)

fisher_geks(
p,
q,
period,
product,
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window = nlevels(period),
n = window - 1L,
na.rm = FALSE

)

walsh_geks(
p,
q,
period,
product,
window = nlevels(period),
n = window - 1L,
na.rm = FALSE

)

Arguments

f A price index function that uses information on both base and current-period
prices and quantities, and satisfies the time-reversal test. Usually a Törnqvist,
Fisher, or Walsh index.

r A finite number giving the order of the generalized mean used to average price
indexes over the rolling window. The default uses a geometric mean.

p A numeric vector of prices, the same length as q.

q A numeric vector of quantities, the same length as p.

period A factor, or something that can be coerced into one, that gives the corresponding
time period for each element in p and q. The ordering of time periods follows
the levels of period to agree with cut().

product A factor, or something that can be coerced into one, that gives the corresponding
product identifier for each element in p and q.

window A positive integer giving the length of the rolling window. The default is a
window that encompasses all periods in period. Non-integers are truncated
towards zero.

n A positive integer giving the length of the index series for each window, starting
from the end of the window. For example, if there are 13 periods in window,
setting n = 1 gives the index for period 13. The default gives an index for each
period in window. Non-integers are truncated towards zero.

na.rm Passed to f to control if missing values are removed.

Value

geks() returns a function:

function(p, q, period, product, window = nlevels(period), n =
window - 1, na.rm = FALSE){...}

This calculates a period-over-period GEKS index with the desired index-number formula, returning
a list for each window with a named-numeric vector of index values.
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tornqvist_geks(), fisher_geks(), and walsh_geks() each return a list with a named numeric
vector giving the value of the respective period-over-period GEKS index for each window.

Note

Like back_period(), if multiple prices correspond to a period-product pair, then the back price at
a point in time is always the first price for that product in the previous period. Unlike a bilateral
index, however, duplicated period-product pairs can have more subtle implications for a multilateral
index.

References

Balk, B. M. (2008). Price and Quantity Index Numbers. Cambridge University Press.

ILO, IMF, OECD, Eurostat, UN, and World Bank. (2020). Consumer Price Index Manual: Theory
and Practice. International Monetary Fund.

Ivancic, L., Diewert, W. E., and Fox, K. J. (2011). Scanner data, time aggregation and the construc-
tion of price indexes. Journal of Econometrics, 161(1): 24–35.

See Also

GEKSIndex() in the indexNumR package for an implementation of the GEKS index with more
options.

Other price index functions: index_weights(), price_indexes, splice_index()

Examples

price <- 1:10
quantity <- 10:1
period <- rep(1:5, 2)
product <- rep(letters[1:2], each = 5)

cumprod(tornqvist_geks(price, quantity, period, product)[[1]])

# Calculate the index over a rolling window

(tg <- tornqvist_geks(price, quantity, period, product, window = 3))

# Use a movement splice to combine the indexes in each window

splice_index(tg, 2)

# ... or use a mean splice

splice_index(tg)

#---- Missing data ----

quantity[2] <- NA

# Use all non-missing data
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fisher_geks(price, quantity, period, product, na.rm = TRUE)

# Remove records with any missing data

fg <- geks(balanced(fisher_index))
fg(price, quantity, period, product, na.rm = TRUE)

#---- Make a Jevons GEKS index ----

jevons_geks <- geks(\(p1, p0, ..., na.rm) jevons_index(p1, p0, na.rm))
jevons_geks(price, quantity, period, product)

generalized_mean Generalized mean

Description

Calculate a weighted generalized mean.

Usage

generalized_mean(r)

arithmetic_mean(x, w = NULL, na.rm = FALSE)

geometric_mean(x, w = NULL, na.rm = FALSE)

harmonic_mean(x, w = NULL, na.rm = FALSE)

Arguments

r A finite number giving the order of the generalized mean.

x A strictly positive numeric vector.

w A strictly positive numeric vector of weights, the same length as x. The default
is to equally weight each element of x.

na.rm Should missing values in x and w be removed? By default missing values in x or
w return a missing value.

Details

The function generalized_mean() returns a function to compute the generalized mean of x with
weights w and exponent r (i.e.,

∏n
i=1 x

wi
i when r = 0 and (

∑n
i=1 wix

r
i )

1/r otherwise). This is also
called the power mean, Hölder mean, or lp mean. See Bullen (2003, p. 175) for a definition, or
https://en.wikipedia.org/wiki/Generalized_mean. The generalized mean is the solution to

https://en.wikipedia.org/wiki/Generalized_mean
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the optimal prediction problem: choose m to minimize
∑n

i=1 wi [log(xi)− log(m)]
2 when r = 0,∑n

i=1 wi [x
r
i −mr]

2 otherwise.

The functions arithmetic_mean(), geometric_mean(), and harmonic_mean() compute the arith-
metic, geometric, and harmonic (or subcontrary) means, also known as the Pythagorean means.
These are the most useful means for making price indexes, and correspond to setting r = 1, r = 0,
and r = -1 in generalized_mean().

Both x and w should be strictly positive (and finite), especially for the purpose of making a price
index. This is not enforced, but the results may not make sense if the generalized mean is not
defined. There are two exceptions to this.

1. The convention in Hardy et al. (1952, p. 13) is used in cases where x has zeros: the generalized
mean is 0 whenever w is strictly positive and r < 0. (The analogous convention holds whenever
at least one element of x is Inf: the generalized mean is Inf whenever w is strictly positive
and r > 0.)

2. Some authors let w be non-negative and sum to 1 (e.g., Sydsaeter et al., 2005, p. 47). If w has
zeros, then the corresponding element of x has no impact on the mean whenever x is strictly
positive. Unlike weighted.mean(), however, zeros in w are not strong zeros, so infinite values
in x will propagate even if the corresponding elements of w are zero.

The weights are scaled to sum to 1 to satisfy the definition of a generalized mean. There are certain
price indexes where the weights should not be scaled (e.g., the Vartia-I index); use sum() for these
cases.

The underlying calculation returned by generalized_mean() is mostly identical to weighted.mean(),
with one important exception: missing values in the weights are not treated differently than missing
values in x. Setting na.rm = TRUE drops missing values in both x and w, not just x. This ensures that
certain useful identities are satisfied with missing values in x. In most cases arithmetic_mean()
is a drop-in replacement for weighted.mean().

Value

generalized_mean() returns a function:

function(x, w = NULL, na.rm = FALSE){...}

This computes the generalized mean of order r of x with weights w.

arithmetic_mean(), geometric_mean(), and harmonic_mean() each return a numeric value for
the generalized means of order 1, 0, and -1.

Note

generalized_mean() can be defined on the extended real line, so that r = -Inf / Inf returns
min()/max(), to agree with the definition in, e.g., Bullen (2003). This is not implemented, and
r must be finite.

There are a number of existing functions for calculating unweighted geometric and harmonic means,
namely the geometric.mean() and harmonic.mean() functions in the psych package, the geomean()
function in the FSA package, the GMean() and HMean() functions in the DescTools package, and
the geoMean() function in the EnvStats package. Similarly, the ci_generalized_mean() function
in the Compind package calculates an unweighted generalized mean.
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See Also

transmute_weights() transforms the weights to turn a generalized mean of order r into a gener-
alized mean of order s.

factor_weights() calculates the weights to factor a mean of products into a product of means.

price_indexes and quantity_index() for simple wrappers that use generalized_mean() to cal-
culate common indexes.

back_period()/base_period() for a simple utility function to turn prices in a table into price
relatives.

Other means: extended_mean(), lehmer_mean(), nested_mean()

Examples

x <- 1:3
w <- c(0.25, 0.25, 0.5)

#---- Common generalized means ----

# Arithmetic mean

arithmetic_mean(x, w) # same as weighted.mean(x, w)

# Geometric mean

geometric_mean(x, w) # same as prod(x^w)

# Harmonic mean

harmonic_mean(x, w) # same as 1 / weighted.mean(1 / x, w)

# Quadratic mean / root mean square

generalized_mean(2)(x, w)
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# Cubic mean
# Notice that this is larger than the other means so far because
# the generalized mean is increasing in r

generalized_mean(3)(x, w)

#---- Comparing the Pythagorean means ----

# The dispersion between the arithmetic, geometric, and harmonic
# mean usually increases as the variance of 'x' increases

x <- c(1, 3, 5)
y <- c(2, 3, 4)

var(x) > var(y)

arithmetic_mean(x) - geometric_mean(x)
arithmetic_mean(y) - geometric_mean(y)

geometric_mean(x) - harmonic_mean(x)
geometric_mean(y) - harmonic_mean(y)

# But the dispersion between these means is only bounded by the
# variance (Bullen, 2003, p. 156)

arithmetic_mean(x) - geometric_mean(x) >= 2 / 3 * var(x) / (2 * max(x))
arithmetic_mean(x) - geometric_mean(x) <= 2 / 3 * var(x) / (2 * min(x))

# Example by Lord (2002) where the dispersion decreases as the variance
# increases, counter to the claims by Fisher (1922, p. 108) and the
# CPI manual (par. 1.14)

x <- (5 + c(sqrt(5), -sqrt(5), -3)) / 4
y <- (16 + c(7 * sqrt(2), -7 * sqrt(2), 0)) / 16

var(x) > var(y)

arithmetic_mean(x) - geometric_mean(x)
arithmetic_mean(y) - geometric_mean(y)

geometric_mean(x) - harmonic_mean(x)
geometric_mean(y) - harmonic_mean(y)

# The "bias" in the arithmetic and harmonic indexes is also smaller in
# this case, counter to the claim by Fisher (1922, p. 108)

arithmetic_mean(x) * arithmetic_mean(1 / x) - 1
arithmetic_mean(y) * arithmetic_mean(1 / y) - 1

harmonic_mean(x) * harmonic_mean(1 / x) - 1
harmonic_mean(y) * harmonic_mean(1 / y) - 1

#---- Missing values ----
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w[2] <- NA

arithmetic_mean(x, w, na.rm = TRUE) # drop the second observation
weighted.mean(x, w, na.rm = TRUE) # still returns NA

grouped Grouped operator

Description

Make a function applicable to grouped data.

Usage

grouped(f, ...)

Arguments

f A function.

... Deprecated. Additional arguments to f that should not be treated as grouped.

Value

A function like f with a new argument group. This accepts a factor to split all other arguments in
f into groups before applying f to each group and combining the results. It is similar to ave(), but
more general.

See Also

Other operators: balanced(), quantity_index()

Examples

p1 <- price6[[3]]
p0 <- price6[[2]]
q1 <- quantity6[[3]]
q0 <- quantity6[[2]]

# Calculate Tornqvist weights for two groups

f <- factor(rep(letters[1:2], each = 3))
tornqvist_weights <- grouped(index_weights("Tornqvist"))
tornqvist_weights(p1, p0, q1, q0, group = f)

# Calculate a mean like ave(), but with weights

x <- 1:6
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w <- c(1:5, NA)
grouped_mean <- grouped(\(x, w) geometric_mean(x, w, na.rm = TRUE))
grouped_mean(x, w, group = f)

# Redistribute weights

w1 <- c(2, 4)
w2 <- 1:6

harmonic_mean(mapply(harmonic_mean, split(x, f), split(w2, f)), w1)

wr <- grouped(scale_weights)(w2, group = f) * w1[f]
harmonic_mean(x, wr)

index_weights Index weights

Description

Calculate weights for a variety of different price indexes.

Usage

index_weights(
type = c("Carli", "Jevons", "Coggeshall", "Dutot", "Laspeyres", "HybridLaspeyres",
"LloydMoulton", "Palgrave", "Paasche", "HybridPaasche", "Drobisch", "Unnamed",
"Tornqvist", "Walsh1", "Walsh2", "MarshallEdgeworth", "GearyKhamis", "Vartia1",
"MontgomeryVartia", "Vartia2", "SatoVartia", "Theil", "Rao", "Lowe", "Young")

)

Arguments

type The name of the index. See details for the possible types of indexes.

Details

The index_weights() function returns a function to calculate weights for a variety of price indexes.
Weights for the following types of indexes can be calculated.

• Carli / Jevons / Coggeshall

• Dutot

• Laspeyres / Lloyd-Moulton

• Hybrid Laspeyres (for use in a harmonic mean)

• Paasche / Palgrave

• Hybrid Paasche (for use in an arithmetic mean)

• Törnqvist / Unnamed
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• Drobisch

• Walsh-I (for an arithmetic Walsh index)

• Walsh-II (for a geometric Walsh index)

• Marshall-Edgeworth

• Geary-Khamis

• Montgomery-Vartia / Vartia-I

• Sato-Vartia / Vartia-II

• Theil

• Rao

• Lowe

• Young

The weights need not sum to 1, as this normalization isn’t always appropriate (i.e., for the Vartia-I
weights).

Value

A function of current and base period prices/quantities that calculates the relevant weights.

Note

Naming for the indexes and weights generally follows the CPI manual (2020), Balk (2008), and Sel-
vanathan and Rao (1994). In several cases two or more names correspond to the same weights (e.g.,
Paasche and Palgrave, or Sato-Vartia and Vartia-II). The calculations are given in the examples.

See Also

update_weights() for price-updating weights.

quantity_index() to remap the arguments in these functions for a quantity index.

Other price index functions: geks(), price_indexes, splice_index()

Examples

p0 <- price6[[2]]
p1 <- price6[[3]]
q0 <- quantity6[[2]]
q1 <- quantity6[[3]]
pb <- price6[[1]]
qb <- quantity6[[1]]

#---- Making the weights for different indexes ----

# Explicit calculation for each of the different weights
# Carli/Jevons/Coggeshall

all.equal(index_weights("Carli")(p1), rep(1, length(p0)))
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# Dutot

all.equal(index_weights("Dutot")(p0), p0)

# Laspeyres / Lloyd-Moulton

all.equal(index_weights("Laspeyres")(p0, q0), p0 * q0)

# Hybrid Laspeyres

all.equal(index_weights("HybridLaspeyres")(p1, q0), p1 * q0)

# Paasche / Palgrave

all.equal(index_weights("Paasche")(p1, q1), p1 * q1)

# Hybrid Paasche

all.equal(index_weights("HybridPaasche")(p0, q1), p0 * q1)

# Tornqvist / Unnamed

all.equal(
index_weights("Tornqvist")(p1, p0, q1, q0),
0.5 * p0 * q0 / sum(p0 * q0) + 0.5 * p1 * q1 / sum(p1 * q1)

)

# Drobisch

all.equal(
index_weights("Drobisch")(p1, p0, q1, q0),
0.5 * p0 * q0 / sum(p0 * q0) + 0.5 * p0 * q1 / sum(p0 * q1)

)

# Walsh-I

all.equal(
index_weights("Walsh1")(p0, q1, q0),
p0 * sqrt(q0 * q1)

)

# Marshall-Edgeworth

all.equal(
index_weights("MarshallEdgeworth")(p0, q1, q0),
p0 * (q0 + q1)

)

# Geary-Khamis

all.equal(
index_weights("GearyKhamis")(p0, q1, q0),
p0 / (1 / q0 + 1 / q1)
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)

# Montgomery-Vartia / Vartia-I

all.equal(
index_weights("MontgomeryVartia")(p1, p0, q1, q0),
logmean(p0 * q0, p1 * q1) / logmean(sum(p0 * q0), sum(p1 * q1))

)

# Sato-Vartia / Vartia-II

all.equal(
index_weights("SatoVartia")(p1, p0, q1, q0),
logmean(p0 * q0 / sum(p0 * q0), p1 * q1 / sum(p1 * q1))

)

# Walsh-II

all.equal(
index_weights("Walsh2")(p1, p0, q1, q0),
sqrt(p0 * q0 * p1 * q1)

)

# Theil

all.equal(index_weights("Theil")(p1, p0, q1, q0), {
w0 <- scale_weights(p0 * q0)
w1 <- scale_weights(p1 * q1)
(w0 * w1 * (w0 + w1) / 2)^(1 / 3)

})

# Rao

all.equal(index_weights("Rao")(p1, p0, q1, q0), {
w0 <- scale_weights(p0 * q0)
w1 <- scale_weights(p1 * q1)
w0 * w1 / (w0 + w1)

})

# Lowe

all.equal(index_weights("Lowe")(p0, qb), p0 * qb)

# Young

all.equal(index_weights("Young")(pb, qb), pb * qb)

lehmer_mean Lehmer mean
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Description

Calculate a weighted Lehmer mean.

Usage

lehmer_mean(r)

contraharmonic_mean(x, w = NULL, na.rm = FALSE)

Arguments

r A finite number giving the order of the Lehmer mean.
x A strictly positive numeric vector.
w A strictly positive numeric vector of weights, the same length as x. The default

is to equally weight each element of x.
na.rm Should missing values in x and w be removed? By default missing values in x or

w return a missing value.

Details

The function lehmer_mean() returns a function to compute the Lehmer mean of order r of x with
weights w, which is calculated as the arithmetic mean of x with weights wxr−1. This is also called
the counter-harmonic mean or generalized anti-harmonic mean. See Bullen (2003, p. 245) for a
definition, or https://en.wikipedia.org/wiki/Lehmer_mean.

The Lehmer mean of order 2 is sometimes called the contraharmonic (or anti-harmonic) mean. The
function contraharmonic_mean() simply calls lehmer_mean(2)(). Like the generalized mean,
the contraharmonic mean is the solution to an optimal prediction problem: choose m to minimize∑n

i=1 wi

(
xi

m − 1
)2

. The Lehmer mean of order -1 has a similar interpretation, replacing xi

m with
m
xi

, and together these bound the harmonic and arithmetic means.

The Lehmer mean is an alternative to the generalized mean that generalizes the Pythagorean means.
The function lehmer_mean(1)() is identical to arithmetic_mean(), lehmer_mean(0)() is iden-
tical to harmonic_mean(), and lehmer_mean(0.5)() is identical to geometric_mean() with two
values and no weights. See von der Lippe (2015) for more details on the use of these means for
making price indexes.

Value

lehmer_mean() returns a function:

function(x, w = NULL, na.rm = FALSE){...}

This computes the Lehmer mean of order r of x with weights w.

contraharmonic_mean() returns a numeric value for the Lehmer mean of order 2.

Note

lehmer_mean() can be defined on the extended real line, so that r = -Inf / Inf returns min()/max(),
to agree with the definition in, e.g., Bullen (2003). This is not implemented, and r must be finite.

https://en.wikipedia.org/wiki/Lehmer_mean
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See Also

Other means: extended_mean(), generalized_mean(), nested_mean()

Examples

x <- 2:3
w <- c(0.25, 0.75)

#---- The Pythagorean means are special cases of the Lehmer mean ----

all.equal(lehmer_mean(1)(x, w), arithmetic_mean(x, w))
all.equal(lehmer_mean(0)(x, w), harmonic_mean(x, w))
all.equal(lehmer_mean(0.5)(x), geometric_mean(x))

#---- Comparing Lehmer means and generalized means ----

# When r < 1, the generalized mean is larger than the corresponding
# Lehmer mean

lehmer_mean(-1)(x, w) < generalized_mean(-1)(x, w)

# The reverse is true when r > 1

lehmer_mean(3)(x, w) > generalized_mean(3)(x, w)

# This implies the contraharmonic mean is larger than the quadratic
# mean, and therefore the Pythagorean means

contraharmonic_mean(x, w) > arithmetic_mean(x, w)
contraharmonic_mean(x, w) > geometric_mean(x, w)
contraharmonic_mean(x, w) > harmonic_mean(x, w)

# ... and the logarithmic mean

contraharmonic_mean(2:3) > logmean(2, 3)

# The difference between the arithmetic mean and contraharmonic mean
# is proportional to the variance of x

weighted_var <- function(x, w) {
arithmetic_mean((x - arithmetic_mean(x, w))^2, w)
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}

arithmetic_mean(x, w) + weighted_var(x, w) / arithmetic_mean(x, w)
contraharmonic_mean(x, w)

#---- Changing the order of the mean ----

# It is easy to modify the weights to turn a Lehmer mean of order r
# into a Lehmer mean of order s because the Lehmer mean can be
# expressed as an arithmetic mean

r <- 2
s <- -3
lehmer_mean(r)(x, w)
lehmer_mean(s)(x, w * x^(r - 1) / x^(s - 1))

# The weights can also be modified to turn a Lehmer mean of order r
# into a generalized mean of order s

lehmer_mean(r)(x, w)
generalized_mean(s)(x, transmute_weights(1, s)(x, w * x^(r - 1)))

# ... and vice versa

lehmer_mean(r)(x, transmute_weights(s, 1)(x, w) / x^(r - 1))
generalized_mean(s)(x, w)

#---- Percent-change contributions ----

# Percent-change contributions for a price index based on the Lehmer
# mean are easy to calculate

scale_weights(w * x^(r - 1)) * (x - 1)

nested_mean Nested generalized mean

Description

Calculate the (outer) generalized mean of two (inner) generalized means (i.e., crossing generalized
means).

Usage

nested_mean(r1, r2, t = c(1, 1))

fisher_mean(x, w1 = NULL, w2 = NULL, na.rm = FALSE)
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Arguments

r1 A finite number giving the order of the outer generalized mean.

r2 A pair of finite numbers giving the order of the inner generalized means.

t A pair of strictly positive weights for the inner generalized means. The default
is equal weights.

x A strictly positive numeric vector.

w1, w2 A strictly positive numeric vector of weights, the same length as x. The default
is to equally weight each element of x.

na.rm Should missing values in x, w1, and w2 be removed? By default missing values
in x, w1, or w2 return a missing value.

Value

nested_mean() returns a function:

function(x, w1 = NULL, w2 = NULL, na.rm = FALSE){...}

This computes the generalized mean of order r1 of the generalized mean of order r2[1] of x with
weights w1 and the generalized mean of order r2[2] of x with weights w2.

fisher_mean() returns a numeric value for the geometric mean of the arithmetic and harmonic
means (i.e., r1 = 0 and r2 = c(1, -1)).

Note

There is some ambiguity about how to remove missing values in w1 or w2 when na.rm = TRUE. The
approach here is to remove missing values when calculating each of the inner means individually,
rather than removing all missing values prior to any calculations. This means that a different number
of data points could be used to calculate the inner means. Use the balanced() operator to balance
missing values across w1 and w2 prior to any calculations.

References

Diewert, W. E. (1976). Exact and superlative index numbers. Journal of Econometrics, 4(2): 114–
145.

ILO, IMF, OECD, Eurostat, UN, and World Bank. (2004). Producer Price Index Manual: Theory
and Practice. International Monetary Fund.

Lent, J. and Dorfman, A. H. (2009). Using a weighted average of base period price indexes to
approximate a superlative index. Journal of Official Statistics, 25(1):139–149.

See Also

nested_contributions() for percent-change contributions for indexes based on nested general-
ized means, like the Fisher index.

Other means: extended_mean(), generalized_mean(), lehmer_mean()
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Examples

x <- 1:3
w1 <- 4:6
w2 <- 7:9

#---- Making superlative indexes ----

# A function to make the superlative quadratic mean price index by
# Diewert (1976) as a product of generalized means

quadratic_mean_index <- function(r) nested_mean(0, c(r / 2, -r / 2))

quadratic_mean_index(2)(x, w1, w2)

# The arithmetic AG mean index by Lent and Dorfman (2009)

agmean_index <- function(tau) nested_mean(1, c(0, 1), c(tau, 1 - tau))

agmean_index(0.25)(x, w1, w1)

#---- Walsh index ----

# The (arithmetic) Walsh index is the implicit price index when using a
# superlative quadratic mean quantity index of order 1

p1 <- price6[[2]]
p0 <- price6[[1]]
q1 <- quantity6[[2]]
q0 <- quantity6[[1]]

walsh <- quadratic_mean_index(1)

sum(p1 * q1) / sum(p0 * q0) / walsh(q1 / q0, p0 * q0, p1 * q1)

sum(p1 * sqrt(q1 * q0)) / sum(p0 * sqrt(q1 * q0))

# Counter to the PPI manual (par. 1.105), it is not a superlative
# quadratic mean price index of order 1

walsh(p1 / p0, p0 * q0, p1 * q1)

# That requires using the average value share as weights

walsh_weights <- sqrt(scale_weights(p0 * q0) * scale_weights(p1 * q1))
walsh(p1 / p0, walsh_weights, walsh_weights)

#---- Missing values ----

x[1] <- NA
w1[2] <- NA

fisher_mean(x, w1, w2, na.rm = TRUE)
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# Same as using obs 2 and 3 in an arithmetic mean, and obs 3 in a
# harmonic mean

geometric_mean(c(
arithmetic_mean(x, w1, na.rm = TRUE),
harmonic_mean(x, w2, na.rm = TRUE)

))

# Use balanced() to use only obs 3 in both inner means

balanced(fisher_mean)(x, w1, w2, na.rm = TRUE)

outliers Outlier detection for price relatives

Description

Standard cutoff-based methods for detecting outliers with price relatives.

Usage

quartile_method(x, cu = 2.5, cl = cu, a = 0, type = 7)

resistant_fences(x, cu = 2.5, cl = cu, a = 0, type = 7)

robust_z(x, cu = 2.5, cl = cu)

fixed_cutoff(x, cu = 2.5, cl = 1/cu)

tukey_algorithm(x, cu = 2.5, cl = cu, type = 7)

hb_transform(x)

Arguments

x A strictly positive numeric vector of price relatives. These can be made with,
e.g., back_period().

cu, cl A numeric vector, or something that can be coerced into one, giving the upper
and lower cutoffs for each element of x. Recycled to the same length as x.

a A numeric vector, or something that can be coerced into one, between 0 and
1 giving the scale factor for the median to establish the minimum dispersion
between quartiles for each element of x. The default does not set a minimum
dispersion. Recycled to the same length as x.

type See quantile().
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Details

Each of these functions constructs an interval of the form [bl(x) − cl × l(x), bu(x) + cu × u(x)]
and assigns a value in x as TRUE if that value does not belong to the interval, FALSE otherwise. The
methods differ in how they construct the values bl(x), bu(x), l(x), and u(x). Any missing values
in x are ignored when calculating the cutoffs, but will return NA.

The fixed cutoff method is the simplest, and just uses the interval [cl, cu].

The quartile method and Tukey algorithm are described in paragraphs 5.113 to 5.135 of the CPI
manual (2020), as well as by Rais (2008) and Hutton (2008). The resistant fences method is an
alternative to the quartile method, and is described by Rais (2008) and Hutton (2008). Quantile-
based methods often identify price relatives as outliers because the distribution is concentrated
around 1; setting a > 0 puts a floor on the minimum dispersion between quantiles as a fraction of
the median. See the references for more details.

The robust Z-score is the usual method to identify relatives in the (asymmetric) tails of the dis-
tribution, simply replacing the mean with the median, and the standard deviation with the median
absolute deviation.

These methods often assume that price relatives are symmetrically distributed (if not Gaussian).
As the distribution of price relatives often has a long right tail, the natural logarithm can be used
to transform price relative before identifying outliers (sometimes under the assumption that price
relatives are distributed log-normal). The Hidiroglou-Berthelot transformation is another approach,
described in the CPI manual (par. 5.124). (Sometimes the transformed price relatives are multiplied
by max(p1, p0)

u, for some 0 ≤ u ≤ 1, so that products with a larger price get flagged as outliers
(par. 5.128).)

Value

A logical vector, the same length as x, that is TRUE if the corresponding element of x is identified as
an outlier, FALSE otherwise.

References

Hutton, H. (2008). Dynamic outlier detection in price index surveys. Proceedings of the Survey
Methods Section: Statistical Society of Canada Annual Meeting.

ILO, IMF, OECD, Eurostat, UN, and World Bank. (2020). Consumer Price Index Manual: Theory
and Practice. International Monetary Fund.

Rais, S. (2008). Outlier detection for the Consumer Price Index. Proceedings of the Survey Methods
Section: Statistical Society of Canada Annual Meeting.

See Also

grouped() to make each of these functions operate on grouped data.

back_period()/base_period() for a simple utility function to turn prices in a table into price
relatives.

The HBmethod() function in the univOutl package for the Hidiroglou-Berthelot method for identi-
fying outliers.
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Examples

set.seed(1234)

x <- rlnorm(10)

fixed_cutoff(x)
robust_z(x)
quartile_method(x)
resistant_fences(x) # always identifies fewer outliers than above
tukey_algorithm(x)

log(x)
hb_transform(x)

# Works the same for grouped data

f <- c("a", "b", "a", "a", "b", "b", "b", "a", "a", "b")
grouped(quartile_method)(x, group = f)

price_data Sample price/quantity data

Description

Prices and quantities for six products over five periods.

Format

Each data frame has 6 rows and 5 columns, with each row corresponding to a product and each
column corresponding to a time period.

Note

Adapted from tables 3.1 and 3.2 in Balk (2008), which were adapted from tables 19.1 and 19.2 in
the PPI manual.

Source

Balk, B. M. (2008). Price and Quantity Index Numbers. Cambridge University Press.

ILO, IMF, OECD, Eurostat, UN, and World Bank. (2004). Producer Price Index Manual: Theory
and Practice. International Monetary Fund.
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Examples

# Recreate tables 3.4, 3.6, and 3.12 from Balk (2008)

index_formulas <- function(p1, p0, q1, q0) {
c(
harmonic_laspeyres = harmonic_index("Laspeyres")(p1, p0, q0),
geometric_laspeyres = geometric_index("Laspeyres")(p1, p0, q0),
laspeyres = arithmetic_index("Laspeyres")(p1, p0, q0),
paasche = harmonic_index("Paasche")(p1, p0, q1),
geometric_paasche = geometric_index("Paasche")(p1, p0, q1),
palgrave = arithmetic_index("Palgrave")(p1, p0, q1),
fisher = fisher_index(p1, p0, q1, q0),
tornqvist = geometric_index("Tornqvist")(p1, p0, q1, q0),
marshall_edgeworth = arithmetic_index("MarshallEdgeworth")(p1, p0, q1, q0),
walsh1 = arithmetic_index("Walsh1")(p1, p0, q1, q0),
vartia2 = geometric_index("Vartia2")(p1, p0, q1, q0),
vartia1 = geometric_index("Vartia1")(p1, p0, q1, q0),
stuvel = stuvel_index(2, 2)(p1, p0, q1, q0)

)
}

round(t(mapply(index_formulas, price6, price6[1], quantity6, quantity6[1])), 4)

price_indexes Price indexes

Description

Calculate a variety of price indexes using information on prices and quantities at two points in time.

Usage

arithmetic_index(type)

geometric_index(type)

harmonic_index(type)

laspeyres_index(p1, p0, q0, na.rm = FALSE)

paasche_index(p1, p0, q1, na.rm = FALSE)

jevons_index(p1, p0, na.rm = FALSE)

lowe_index(p1, p0, qb, na.rm = FALSE)

young_index(p1, p0, pb, qb, na.rm = FALSE)
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fisher_index(p1, p0, q1, q0, na.rm = FALSE)

hlp_index(p1, p0, q1, q0, na.rm = FALSE)

lm_index(elasticity)

cswd_index(p1, p0, na.rm = FALSE)

cswdb_index(p1, p0, q1, q0, na.rm = FALSE)

bw_index(p1, p0, na.rm = FALSE)

stuvel_index(a, b)

arithmetic_agmean_index(elasticity)

geometric_agmean_index(elasticity)

lehr_index(p1, p0, q1, q0, na.rm = FALSE)

Arguments

type The name of the index. See details for the possible types of indexes.

p1 Current-period prices.

p0 Base-period prices.

q0 Base-period quantities.

na.rm Should missing values be removed? By default missing values for prices or
quantities return a missing value.

q1 Current-period quantities.

qb Period-b quantities for the Lowe/Young index.

pb Period-b prices for the Lowe/Young index.

elasticity The elasticity of substitution for the Lloyd-Moulton and AG mean indexes.

a, b Parameters for the generalized Stuvel index.

Details

The arithmetic_index(), geometric_index(), and harmonic_index() functions return a func-
tion to calculate a given type of arithmetic, geometric (logarithmic), and harmonic index. Together,
these functions produce functions to calculate the following indexes.

• Arithmetic indexes

• Carli

• Dutot

• Laspeyres
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• Palgrave

• Unnamed index (arithmetic mean of Laspeyres and Palgrave)

• Drobisch (arithmetic mean of Laspeyres and Paasche)

• Walsh-I (arithmetic Walsh)

• Marshall-Edgeworth

• Geary-Khamis

• Lowe

• Young

• Geometric indexes
• Jevons

• Geometric Laspeyres

• Geometric Paasche

• Geometric Young

• Törnqvist (or Törnqvist-Theil)

• Montgomery-Vartia / Vartia-I

• Sato-Vartia / Vartia-II

• Walsh-II (geometric Walsh)

• Theil

• Rao

• Harmonic indexes
• Coggeshall (equally weighted harmonic index)

• Paasche

• Harmonic Laspeyres

• Harmonic Young

Along with the lm_index() function to calculate the Lloyd-Moulton index, these are just conve-
nient wrappers for generalized_mean() and index_weights().

The Laspeyres, Paasche, Jevons, Lowe, and Young indexes are among the most common price in-
dexes, and so they get their own functions. The laspeyres_index(), lowe_index(), and young_index()
functions correspond to setting the appropriate type in arithmetic_index(); paasche_index()
and jevons_index() instead come from the harmonic_index() and geometric_index() func-
tions.

In addition to these indexes, there are also functions for calculating a variety of indexes not based on
generalized means. The Fisher index is the geometric mean of the arithmetic Laspeyres and Paasche
indexes; the Harmonic Laspeyres Paasche index is the harmonic analog of the Fisher index (8054
on Fisher’s list). The Carruthers-Sellwood-Ward-Dalen and Carruthers-Sellwood-Ward-Dalen-Balk
indexes are sample analogs of the Fisher index; the Balk-Walsh index is the sample analog of
the Walsh index. The AG mean index is the arithmetic or geometric mean of the geometric and
arithmetic Laspeyres indexes, weighted by the elasticity of substitution. The stuvel_index()
function returns a function to calculate a Stuvel index of the given parameters. The Lehr index is
an alternative to the Geary-Khamis index, and is the implicit price index for Fisher’s index 4153.
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Value

arithmetic_index(), geometric_index(), harmonic_index(), and stuvel_index() each re-
turn a function to compute the relevant price indexes; lm_index(), arithmetic_agmean_index(),
and geometric_agmean_index() each return a function to calculate the relevant index for a given
elasticity of substitution. The others return a numeric value giving the change in price between the
base period and current period.

Note

There are different ways to deal with missing values in a price index, and care should be taken when
relying on these functions to remove missing values. Setting na.rm = TRUE removes price relatives
with missing information, either because of a missing price or a missing weight, while using all
available non-missing information to make the weights.

Certain properties of an index-number formula may not work as expected when removing missing
values if there is ambiguity about how to remove missing values from the weights (as in, e.g.,
a Törnqvist or Sato-Vartia index). The balanced() operator may be helpful, as it balances the
removal of missing values across prices and quantities prior to making the weights.

References

Balk, B. M. (2008). Price and Quantity Index Numbers. Cambridge University Press.

Fisher, I. (1922). The Making of Index Numbers. Houghton Mifflin Company.

ILO, IMF, OECD, Eurostat, UN, and World Bank. (2020). Consumer Price Index Manual: Theory
and Practice. International Monetary Fund.

von der Lippe, P. (2001). Chain Indices: A Study in Price Index Theory, Spectrum of Federal
Statistics vol. 16. Federal Statistical Office, Wiesbaden.

von der Lippe, P. (2015). Generalized Statistical Means and New Price Index Formulas, Notes on
some unexplored index formulas, their interpretations and generalizations. Munich Personal RePEc
Archive paper no. 64952.

Selvanathan, E. A. and Rao, D. S. P. (1994). Index Numbers: A Stochastic Approach. MacMillan.

See Also

generalized_mean() for the generalized mean that powers most of these functions.

contributions() for calculating percent-change contributions.

quantity_index() to remap the arguments in these functions for a quantity index.

price6() for an example of how to use these functions with more than two time periods.

The piar package has more functionality working with price indexes for multiple groups of products
over many time periods.

Other price index functions: geks(), index_weights(), splice_index()
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Examples

p0 <- price6[[2]]
p1 <- price6[[3]]
q0 <- quantity6[[2]]
q1 <- quantity6[[3]]
pb <- price6[[1]]
qb <- quantity6[[1]]

#---- Calculating price indexes ----

# Most indexes can be calculated by combining the appropriate weights
# with the correct type of mean

geometric_index("Laspeyres")(p1, p0, q0)
geometric_mean(p1 / p0, index_weights("Laspeyres")(p0, q0))

# Arithmetic Laspeyres index

laspeyres_index(p1, p0, q0)
arithmetic_mean(p1 / p0, index_weights("Laspeyres")(p0, q0))

# Harmonic calculation for the arithmetic Laspeyres

harmonic_mean(p1 / p0, index_weights("HybridLaspeyres")(p1, q0))

# Same as transmuting the weights

all.equal(
scale_weights(index_weights("HybridLaspeyres")(p1, q0)),
scale_weights(
transmute_weights(1, -1)(p1 / p0, index_weights("Laspeyres")(p0, q0))

)
)

# This strategy can be used to make more exotic indexes, like the
# quadratic-mean index (von der Lippe, 2001, p. 71)

generalized_mean(2)(p1 / p0, index_weights("Laspeyres")(p0, q0))

# Or the exponential mean index (p. 64)

log(arithmetic_mean(exp(p1 / p0), index_weights("Laspeyres")(p0, q0)))

# Or the arithmetic hybrid index (von der Lippe, 2015, p. 5)

arithmetic_mean(p1 / p0, index_weights("HybridLaspeyres")(p1, q0))
contraharmonic_mean(p1 / p0, index_weights("Laspeyres")(p0, q0))

# Unlike its arithmetic counterpart, the geometric Laspeyres can
# increase when base-period prices increase if some of these prices
# are small
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gl <- geometric_index("Laspeyres")
p0_small <- replace(p0, 1, p0[1] / 5)
p0_dx <- replace(p0_small, 1, p0_small[1] + 0.01)
gl(p1, p0_small, q0) < gl(p1, p0_dx, q0)

#---- Price updating the weights in a price index ----

# Chain an index by price updating the weights

p2 <- price6[[4]]
laspeyres_index(p2, p0, q0)

I1 <- laspeyres_index(p1, p0, q0)
w_pu <- update_weights(p1 / p0, index_weights("Laspeyres")(p0, q0))
I2 <- arithmetic_mean(p2 / p1, w_pu)
I1 * I2

# Works for other types of indexes, too

harmonic_index("Laspeyres")(p2, p0, q0)

I1 <- harmonic_index("Laspeyres")(p1, p0, q0)
w_pu <- factor_weights(-1)(p1 / p0, index_weights("Laspeyres")(p0, q0))
I2 <- harmonic_mean(p2 / p1, w_pu)
I1 * I2

#---- Percent-change contributions ----

# Percent-change contributions for the Tornqvist index

w <- index_weights("Tornqvist")(p1, p0, q1, q0)
(con <- geometric_contributions(p1 / p0, w))

all.equal(sum(con), geometric_index("Tornqvist")(p1, p0, q1, q0) - 1)

#---- Missing values ----

# NAs get special treatment

p_na <- replace(p0, 6, NA)

# Drops the last price relative

laspeyres_index(p1, p_na, q0, na.rm = TRUE)

# Only drops the last period-0 price

sum(p1 * q0, na.rm = TRUE) / sum(p_na * q0, na.rm = TRUE)

#---- von Bortkiewicz decomposition ----

paasche_index(p1, p0, q1) / laspeyres_index(p1, p0, q0) - 1
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wl <- scale_weights(index_weights("Laspeyres")(p0, q0))
pl <- laspeyres_index(p1, p0, q0)
ql <- quantity_index(laspeyres_index)(q1, q0, p0)

sum(wl * (p1 / p0 / pl - 1) * (q1 / q0 / ql - 1))

# Similar decomposition for geometric Laspeyres/Paasche

wp <- scale_weights(index_weights("Paasche")(p1, q1))
gl <- geometric_index("Laspeyres")(p1, p0, q0)
gp <- geometric_index("Paasche")(p1, p0, q1)

log(gp / gl)

sum(scale_weights(wl) * (wp / wl - 1) * log(p1 / p0 / gl))

#---- Consistency in aggregation ----

p0a <- p0[1:3]
p0b <- p0[4:6]
p1a <- p1[1:3]
p1b <- p1[4:6]
q0a <- q0[1:3]
q0b <- q0[4:6]
q1a <- q1[1:3]
q1b <- q1[4:6]

# Indexes based on the generalized mean with value share weights are
# consistent in aggregation

lm_index(0.75)(p1, p0, q0)

w <- index_weights("LloydMoulton")(p0, q0)
Ia <- generalized_mean(0.25)(p1a / p0a, w[1:3])
Ib <- generalized_mean(0.25)(p1b / p0b, w[4:6])
generalized_mean(0.25)(c(Ia, Ib), c(sum(w[1:3]), sum(w[4:6])))

# Agrees with group-wise indexes

all.equal(lm_index(0.75)(p1a, p0a, q0a), Ia)
all.equal(lm_index(0.75)(p1b, p0b, q0b), Ib)

# Care is needed with more complex weights, e.g., Drobisch, as this
# doesn't fit Balk's (2008) definition (p. 113) of a generalized-mean
# index (it's the arithmetic mean of a Laspeyres and Paasche index)

arithmetic_index("Drobisch")(p1, p0, q1, q0)

w <- index_weights("Drobisch")(p1, p0, q1, q0)
Ia <- arithmetic_mean(p1a / p0a, w[1:3])
Ib <- arithmetic_mean(p1b / p0b, w[4:6])
arithmetic_mean(c(Ia, Ib), c(sum(w[1:3]), sum(w[4:6])))
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# Does not agree with group-wise indexes

all.equal(arithmetic_index("Drobisch")(p1a, p0a, q1a, q0a), Ia)
all.equal(arithmetic_index("Drobisch")(p1b, p0b, q1b, q0b), Ib)

quantity_index Quantity index operator

Description

Remaps price arguments into quantity argument (and vice versa) to turn a price index into a quantity
index.

Usage

quantity_index(f)

Arguments

f A price-index function.

Value

A function like f, except that the role of prices/quantities is reversed.

See Also

Other operators: balanced(), grouped()

Examples

p1 <- price6[[3]]
p0 <- price6[[2]]
q1 <- quantity6[[3]]
q0 <- quantity6[[2]]

# Remap argument names to be quantities rather than prices

quantity_index(laspeyres_index)(q1 = q1, q0 = q0, p0 = p0)

laspeyres_index(p1 = q1, p0 = q0, q0 = p0)

# Works with the index_weights() functions, too

quantity_index(index_weights("Laspeyres"))(q0 = q0, p0 = p0)
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scale_weights Scale weights

Description

Scale a vector of weights so that they sum to 1.

Usage

scale_weights(x)

Arguments

x A strictly positive numeric vector.

Value

A numeric vector that sums to 1. If there are NAs in x then the result sums 1 to if these values are
removed.

See Also

grouped() to make this function applicable to grouped data.

Other weights functions: factor_weights(), transmute_weights()

Examples

scale_weights(1:5)

splice_index Splice an index series

Description

Splice a collection of index series computed over a rolling window into one index series. Splicing
on multiple points combines the results with a geometric mean.

Usage

splice_index(x, periods = NULL, initial = NULL, published = FALSE)
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Arguments

x A list of equal-length numeric vectors giving the period-over-period indexes for
each window.

periods An integer vector giving the splice points for each window. The default splices
on each point in the window.

initial A numeric vector giving an initial period-over-period index series onto which
the elements of x are spliced. The default uses the first element of x.

published Should the splice be done against the published series? The default splices using
the recalculated index series.

Value

A numeric vector giving the spliced (fixed-base) index series.

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper
presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro,
Brazil.

Krsinich, F. (2016). The FEWS index: Fixed effects with a window splice. Journal of Official
Statistics, 32(2), 375-404.

See Also

Other price index functions: geks(), index_weights(), price_indexes

Examples

# Make an index series over a rolling window
x <- list(c(1.1, 0.9, 1.2), c(0.8, 1.3, 1.4), c(1.3, 1.3, 0.8))

# Mean splice

splice_index(x)

# Movement splice

splice_index(x, 3)

# Window splice

splice_index(x, 1)

# Splicing on the published series preserves the within-window
# movement of the index series

splice_index(x, 1, published = TRUE)
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transmute_weights Transmute weights

Description

Transmute weights to turn a generalized mean of order r into a generalized mean of order s. Useful
for calculating additive and multiplicative decompositions for a generalized-mean index, and those
made of nested generalized means (e.g., Fisher index).

Usage

transmute_weights(r, s)

nested_transmute(r1, r2, s, t = c(1, 1))

nested_transmute2(r1, r2, s, t = c(1, 1))

Arguments

r, s A finite number giving the order of the generalized mean. See details.

r1 A finite number giving the order of the outer generalized mean.

r2 A pair of finite numbers giving the order of the inner generalized means.

t A pair of strictly positive weights for the inner generalized means. The default
is equal weights.

Details

The function transmute_weights(r, s) returns a function to compute a vector of weights v(x,
w) such that

generalized_mean(r)(x, w) == generalized_mean(s)(x, v(x, w))

nested_transmute(r1, r2, t, s) and nested_transmute2(r1, r2, t, s) do the same for nested
generalized means, so that

nested_mean(r1, r2, t)(x, w1, w2) ==
generalized_mean(s)(x, v(x, w1, w2))

This generalizes the result for turning a geometric mean into an arithmetic mean (and vice versa)
in section 4.2 of Balk (2008), and a Fisher mean into an arithmetic mean in section 6 of Reinsdorf
et al. (2002), although these are usually the most important cases. See Martin (2021) for details.
nested_transmute2() takes a slightly different approach than nested_transmute(), generalizing
the van IJzeren arithmetic decomposition for the Fisher index (Balk, 2008, section 4.2.2) using the
approach by Martin (2021), although in most cases the results are broadly similar.

Transmuting weights returns a value that is the same length as x, so any missing values in x or the
weights will return NA. Unless all values are NA, however, the result for will still satisfy the above
identities when na.rm = TRUE.
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Value

transmute_weights() returns a function:

function(x, w = NULL){...}

nested_transmute() and nested_transmute2() similarly return a function:

function(x, w1 = NULL, w2 = NULL){...}

References

Balk, B. M. (2008). Price and Quantity Index Numbers. Cambridge University Press.

Martin, S. (2021). A note on general decompositions for price indexes. Prices Analytical Series,
Statistics Canada catalogue no. 62F0014M. Statistics Canada, Ottawa.

Reinsdorf, M. B., Diewert, W. E., and Ehemann, C. (2002). Additive decompositions for Fisher,
Törnqvist and geometric mean indexes. Journal of Economic and Social Measurement, 28(1-2):51–
61.

Sydsaeter, K., Strom, A., and Berck, P. (2005). Economists’ Mathematical Manual (4th edition).
Springer.

See Also

generalized_mean() for the generalized mean and nested_mean() for the nested mean.

extended_mean() for the extended mean that underlies transmute_weights().

contributions() for calculating additive percent-change contributions.

grouped() to make these functions operate on grouped data.

Other weights functions: factor_weights(), scale_weights()

Examples

x <- 1:3
y <- 4:6
w <- 3:1

#---- Transforming generalized means ----

# Calculate the geometric mean as an arithmetic mean and
# harmonic mean by transmuting the weights

geometric_mean(x)
arithmetic_mean(x, transmute_weights(0, 1)(x))
harmonic_mean(x, transmute_weights(0, -1)(x))

# Transmuting the weights for a harmonic mean into those
# for an arithmetic mean is the same as using weights w / x

all.equal(transmute_weights(-1, 1)(x, w), scale_weights(w / x))
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# Transmuting the weights for an arithmetic mean into those
# for a harmonic mean is the same as using weights w * x

all.equal(transmute_weights(1, -1)(x, w), scale_weights(w * x))

# Works for nested means, too

w1 <- 3:1
w2 <- 1:3

fisher_mean(x, w1, w2)

arithmetic_mean(x, nested_transmute(0, c(1, -1), 1)(x, w1, w2))
arithmetic_mean(x, nested_transmute2(0, c(1, -1), 1)(x, w1, w2))

# Note that nested_transmute() has an invariance property
# not shared by nested_transmute2()

all.equal(
nested_transmute(0, c(1, -1), 1)(x, w1, w2),
transmute_weights(2, 1)(
x, nested_transmute(0, c(1, -1), 2)(x, w1, w2)

)
)

all.equal(
nested_transmute2(0, c(1, -1), 1)(x, w1, w2),
transmute_weights(2, 1)(

x, nested_transmute2(0, c(1, -1), 2)(x, w1, w2)
)

)

#---- Monotonicity ----

# Transmuted weights increase when x is small and decrease
# when x is large if r < s

transmute_weights(0, 1)(x, w) > scale_weights(w)

# The opposite happens when r > s

transmute_weights(1, 0)(x, w) > scale_weights(w)

#---- Percent-change contributions ----

# Transmuted weights can be used to calculate percent-change
# contributions for, e.g., a geometric price index

transmute_weights(0, 1)(x) * (x - 1)
geometric_contributions(x) # the more convenient way

#---- Basket representation of a price index ----
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# Any generalized-mean index can be represented as a basket-style
# index by transmuting the weights, which is how some authors
# define a price index (e.g., Sydsaeter et al., 2005, p. 174)

p1 <- 2:6
p0 <- 1:5

qs <- transmute_weights(-1, 1)(p1 / p0) / p0
all.equal(harmonic_mean(p1 / p0), sum(p1 * qs) / sum(p0 * qs))
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