Package 'm5'

October 13, 2022

```
Type Package
Title 'M5 Forecasting' Challenges Data
Version 0.1.1
Description Contains functions, which facilitate downloading, loading and prepar-
     ing data from 'M5 Forecasting' challenges (by 'University of Nicosia', hosted on 'Kaggle').
     The data itself is set of time series of different product sales in 'Walmart'.
     The package also includes a ready-to-use built-in M5 subset named 'tiny_m5'.
     For detailed information about the challenges, see:
     Makridakis, S. & Spiliotis, E. & Assimakopou-
     los, V. (2020). <doi:10.1016/j.ijforecast.2021.10.009>.
Encoding UTF-8
LazyData true
BugReports https://github.com/krzjoa/m5/issues
URL https://github.com/krzjoa/m5, https://krzjoa.github.io/m5/
RoxygenNote 7.1.2
License MIT + file LICENSE
Depends R (>= 3.5.0)
Suggests ggplot2, knitr, testthat (>= 3.0.0), rmarkdown, zeallot
VignetteBuilder knitr
Imports data.table, stringi, lubridate
Config/testthat/edition 3
NeedsCompilation no
Author Krzysztof Joachimiak [aut, cre]
     (<https://orcid.org/0000-0003-4780-7947>)
Maintainer Krzysztof Joachimiak < joachimiak.krzysztof@gmail.com>
Repository CRAN
Date/Publication 2022-09-12 08:32:55 UTC
```

2 m5_demand_type

R topics documented:

m5_demand_type														
m5_download														
m5_get_raw														
m5_prepare														
tiny_m5														

8

m5_demand_type

Classify time series of the particular items

Description

Each time series in the dataset can be assigned one of the following classes:

Usage

Index

```
m5_demand_type(data)
```

Arguments

data

The result of the m5_prepare function; tiny_m5 can be passed as well.

Details

- Smooth (ADI < 1.32 and $CV^2 < 0.49$).
- Intermittent (ADI >= 1.32 and $CV^2 < 0.49$)
- Erratic (ADI < 1.32 and $CV^2 >= 0.49$)
- Lumpy (ADI >= 1.32 and $CV^2 >= 0.49$)

Value

A data.table containing item ids (item_id and store_id), ADI and CV2 scores (adi and cv2 respectively) as well as the final class chosen based on the aforementioned scores (demand_type).

References

Syntetos A. A. and Boylan J. E., 2005, The accuracy of intermittent demand estimates. International Journal of Forecasting 21: 303–314 Forecast Error Measures: Intermittent Demand

Examples

```
head(m5_demand_type(tiny_m5))
```

m5_download 3

m5_download Download and unzip the raw data to the specified directory	
--	--

Description

Download and unzip the raw data to the specified directory

Usage

```
m5_download(path, unzip = TRUE)
```

Arguments

path A directory name to save the zip file

unzip Automatically uznip the file when the downloading is finished. Default: TRUE.

The exdir argument in the unzip function is the directory name the file was

downloaded into.

Value

Returns nothing; the result of the function call is the m5.zip file downloading and extraction.

Note

If you struggle with timeout problems, please increase the timeout value using options(timeout=<new_timeout_value>)

References

- M5 Forecasting Accuracy
- M5 Forecasting Uncertainty

Examples

```
m5_download('data')
```

m5_get_raw

```
m5_get_raw
```

Load raw CSV files using data.table::fread() function

Description

```
Load raw CSV files using data.table::fread() function
```

Usage

```
m5_get_raw_evaluation(path)
m5_get_raw_validation(path)
```

Arguments

path

The directory with the unzipped M5 data files

Value

The function returns a list of five data.tables:

- sales_train (evaluation/validation)
- sales_test (evaluation/validation)
- sell_prices
- calendar
- weights (evaluation/validation)

References

m5-forecasts repo by Nixtla

Examples

```
## Not run:
library(m5)
library(zeallot)

m5_download('data')
c(sales_train,
    sales_test,
    sell_prices,
    calendar,
    ) %<-% m5_get_raw_evaluation('data')

## End(Not run)</pre>
```

m5_prepare 5

m5_prepare	Prepare the ready-to-use M5 data in one data.frame	

Description

It's a memory-efficient function, which uses data.table under the hood. However, it still not recommended to use this function on PCs with < 16GB RAM. In such case, consider to use a custom solution based on [arrow](https://arrow.apache.org/docs/r/) or [disk.frame](https://diskframe.com/index.html)

Usage

```
m5_prepare(sales_train, sales_test, calendar, sell_prices)
```

Arguments

sales_train A data.frame with M5 train data
sales_test A data.frame with M5 test data
calendar A data.frame with M5 calendar
sell_prices A data.frame with M5 sell_prices

Value

A data.table composed from input objects, which contains the following columns:

- item id
- dept_id
- cat_id
- store_id
- state_id
- *d* day ordinal number
- value number of sold items
- wm_yr_wk week identifier
- weekday weekday name (character)
- wday weekday as an integer
- month
- year
- event_name_1 special event name, like holidays etc.
- event_type_1 special event type
- event_name_2 as above
- event_type_2 as above
- snap promotion flag
- sell_price

6 tiny_m5

Examples

```
library(m5)
library(zeallot)

m5_download('data')
c(sales_train,
    sales_test,
    sell_prices,
    calendar,
    weights) %<-% m5_get_raw_evaluation('data')

m5_data <-
    m5_prepare(sales_train, sales_test, calendar, sell_prices)</pre>
```

tiny_m5

A subset from M5 Walmart Challenge Dataset in one data frame

Description

A piece of data cut from the training dataset used in the M5 challenges on Kaggle. M5 is a challenge from a series organized by Spyros Makridakis.

Usage

 $tiny_m5$

Format

```
item_id The id of the product
dept_id The id of the department the product belongs to
cat_id The id of the category the product belongs to
store_id The id of the store where the product is sold
state_id The State where the store is located
value The number of sold units
date The date in a "y-m-d" format
wm_yr_wk The id of the week the date belongs to
weekday The type of the day (Saturday, Sunday, ..., Friday)
wday The id of the weekday, starting from Saturday
month The month of the date
year The year of the date
event_name_1 If the date includes an event, the name of this event
```

tiny_m5

event_type_1 If the date includes an event, the type of this event

event_name_2 If the date includes a second event, the name of this event

event_type_2 If the date includes a second event, the type of this event

snap A binary variable (0 or 1) indicating whether the stores of CA, TX or WI allow SNAP1 purchases on the examined date. 1 indicates that SNAP purchases are allowed

sell_price The price of the product for the given week/store. The price is provided per week (average across seven days). If not available, this means that the product was not sold during the examined week. Note that although prices are constant at weekly basis, they may change through time (both training and test set)

See Also

M5 Forecasting - Accuracy

M5 Forecasting - Uncertainty

The M5 competition: Background, organization, and implementation

Other Walmart datasets in timetk

Examples

library(m5)
Head of tiny_m5
head(tiny_m5)

Index