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Abstract

This introduction to the R package msBP can be also found in Canale (2017), published
in the Journal of Statistical Software. msBP is an available R package that implements
a new method to perform Bayesian multiscale nonparametric inference introduced by
Canale and Dunson (2016). The method, based on mixtures of multiscale beta dictionary
densities, overcomes the drawbacks of Pdlya trees and inherits many of the advantages
of Dirichlet process mixture models. The key idea is that an infinitely-deep binary tree
is introduced, with a beta dictionary density assigned to each node of the tree. Using a
multiscale stick-breaking characterization, stochastically decreasing weights are assigned
to each node. The results is an infinite mixture model. The package msBP implements
a series of basic functions to deal with this family of prior such as random densities
and numbers generation, creation and manipulation of binary tree objects, and generic
functions to plot and print the results. In addition, it implements the Gibbs samplers for
posterior computation to perform multiscale density estimation and multiscale testing of
group differences described in Canale and Dunson (2016).
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1. Introduction

Multiscale methods have received abundant attention in the statistical literature, having sev-
eral appealing characteristics that pushed their use in many applications. With the term
“multiscale model” we refer to a model in which multiple sub-models at different scales are
used simultaneously. A notable example is represented by wavelets, which are routinely used
in signal and image processing, nonparametric regression, and density estimation (Donoho,
Johnstone, Kerkyacharian, and Picard 1996). However, from the Bayesian perspective, mul-
tiscale density estimation is surprisingly understudied. Indeed, most of the approaches rely
on single-scale kernel mixtures. Above the other, the Dirichlet process (DP) (Ferguson 1973,
1974) mixtures of Gaussian (Lo 1984; Escobar and West 1995) is the gold standard in many
applications. An exception is represented by Pélya trees (Mauldin, Sudderth, and Williams
1992; Lavine 1992a,b) that unfortunately have some unappealing characteristics. For example
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they tend to produce highly spiky densities even when the true density is fairly smooth and
are sensitive to the prior specification. This sensitivity can be overcome within a mixture
approach (Hanson and Johnson 2002), but in this case there is a price to pay in terms of
computation. Both the DP and Pdlya tree mixture models are implemented in the famous
DPpackage (Jara, Hanson, Quintana, Mueller, and Rosner 2011), an R package that repre-
sents the de facto standard software for Bayesian nonparametric inference under a variety of
settings.

Canale and Dunson (2016) recently proposed a Bayesian multiscale method that inherits some
advantages of the DP mixture and avoids the disadvantages of Pélya trees. The key idea lies in
introducing an infinitely-deep binary tree, with a beta dictionary density assigned to each node
of the tree. Using a multiscale stick-breaking (Sethuraman 1994) characterization, the authors
define a stochastically decreasing sequence of weights assigned to each node of the tree. This
formulation implies that within a level of the tree, the densities are equivalent to Bernstein
polynomials (Petrone 1999a,b). Extensions to deal with unconstrained domain data are also
discussed. A similar idea appeared also in Chen, Hanson and Zhang (2014). The DP-like
characteristics derives from the formulation of a multiscale generalization of the stick-breaking
process, which can be exploited to build an efficient slice sampling algorithm. The same
multiscale stick-breaking process has also been used by Wang, Canale, and Dunson (2016)
to learn the joint density in massive dimensional settings, using geometric multiresolution
analysis to estimate the dictionary densities over the binary tree at a first stage.

The R package msBP implements the multiscale stick-breaking process, and its applications
to density estimation and to testing of group differences as discussed in Canale and Dunson
(2016), and a series of basic R functions to deal with this family of nonparametric priors such
as random density and number generation, creation and manipulation of binary trees, and
generic functions to plot and print the results. The package’s core is written in C++ by
means of specific bintree data class and it is called from R via the .C function.

The rest of the paper is organized as follow: in the next section we outline the theoreti-
cal framework with particular emphasis on the multiscale stick-breaking process. Section 3
describes the main features of the C++ implementation while Section 4 is concerned with
demonstrating the main features of the package.

2. A multiscale prior for densities

2.1. Basic formulation

Let x € X C R, be a random variable, g be an unknown density and  ~ g. Under a Bayesian
perspective go is assumed to be a prior guess for g, with Go and G, ! the corresponding
cumulative distribution function (CDF) and inverse CDF, respectively. A prior for g centered
on go can be introduced through a prior for the density f of y = Go(x) € (0,1). The CDFs
F and G corresponding to the densities f and g, respectively, have the following relationship

G(x) = F{Go(x)},z € X, F(y) = G{Gg' ()}, y € (0,1). (1)

A similar construction also appeared in Chen et al. (2014). The density f is assumed to have
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the following structure:
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where Be(a, b) denotes the beta density with mean a/(a+b). The sequence of random weights
{ms n} are constructed via the multiscale stick-breaking process described below. We will refer
to the latter construction as multiscale Bernstein polynomial (msBP) model.

To build a multiscale stick-breaking process, an infinite sequence of scales s = 0,1,...,00
labelling the levels of an infinite-deep binary tree is introduced. At each scale s there will
be 2° different nodes. A cartoon of the binary tree is reported in Figure 1. To describe a
stochastic path from the root node to the leaves, at each scale s and node h within the scale,
the following independent random variables are introduced:

Ssn~Be(l,a), Rsp~ Be(b,b), (3)

corresponding to the probability of stopping at node (s, h) and taking the right path after
node (s, h) conditionally on not stopping, respectively. This formulation generalizes the stick-
breaking process representation of Sethuraman (1994). Each time the stick is broken, it is
then randomly divided in two parts (one for the probability of going right, the remainder for
the probability of going left) before the next break. Hence, similarly to Sethuraman (1994),
the infinite sequence of weights can be defined as

Ts,h — Ss,h H(l - Sr,gshr)Tshr (4)

r<s

where gspr = [h/2°7"] is the node traveled through at scale  on the way to node h at scale
S, Tshr = Ry g, if (r+1, gshr+1) is the right daughter of node (7, gspr), and Tsp, =1 — R, g, .
if (r+ 1, gsnre1) is the left daughter of (r, gsn). Note that the general (s,h) node is related
to the Be(h,2® — h + 1) density.

The above construction leads to a meaningful sequence of weights, i.e., > o2 2,2::1 Tsh = 1
almost surely for any a,b > 0 as proved in Lemma 1 of Canale and Dunson (2016). An
appealing aspect of this formulation is that it produces a multiscale clustering of the subjects.
In particular, two subjects having similar observations may have the same cluster allocation
up to some scale s, but are not clustered together on finer scales.

2.2. Bayesian multiscale inference on group differences

A promising feature of this multiscale stick-breaking process is its ease of generalization to
more complex settings than mere density estimation. For example, the sequence of random
variables defined in Equation 3 can be generalized to include predictors or other forms of
dependence, (e.g., spatial or temporal). Motivated by epigenetic data, Canale and Dunson
(2016) modified model (2)—(3), to perform Bayesian multiscale inference on group differences.
Let y; be a bounded (between zero and one) outcome for subject ¢ with y; ~ fg, and d; € {0,1}.
The label d; denotes a subject’s group (e.g., cases/controls, drug/placebo). Using the msBP
representation, the hypothesis fo = fi is true if the groups share the same weights over the
binary tree. If fo # fi, we may have the same weights on the dictionary elements up to a
given scale, so that the densities are equivalent up to that scale but not at finer scales. Thus,
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Figure 1: Binary tree with beta kernels at each node (s, h), where s is the scale level and h

is the index within the scale.

one can also test for Hj : f§ = f{, i.e., no differences between the two groups at scale s.
Clearly H{ is true with probability one, and thus a further modification of (3) consists to set
5071 =0.

The subjects surviving up to scale s can stop or progress to the next scale. Let N'® denote
these actions, with N’& denoting the actions in group d. Conditionally on A® the posterior
probability of Hy being true at scale s can be written as

Pipr(\°|Hj) 5
Pepr(NIHG) + (1= P pr (N[ Hf)

pr(HgIN?) =

where Fj§ is our prior guess for the null being true at scale s and pr(N*®|H{) is the probability
of the possible actions if Hy is true up to scale s. To compute the latter, we can use

POV |H;) = [ pr T )pe(Tla, )T
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where a5, = a + vsp — Ngp, IA)s,h =b+ren, and Csp, = b+ Vs p — Ngp — Tsn, and vgp is the
number of subjects passing through node (s, h), ngy is the number of subjects stopping at
node (s, h), and 74 p, is the number of subjects that continue to the right after passing through
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node (s, h). Similarly
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where vid,z is the number of subjects passing through node (s, k) in group d, nid,z is the number

(d)

of subjects stopping at node (s, h) in group d, and r sh 1S the number of subjects that continue
to the right after passing through node (s, k) in group d, with d = 0,1. The global null will
be the cumulative product of Equation 5 for each scale.

Motivated by a DNA methylation arrays application, Canale and Dunson (2016) generalized
the latter formulation in the case in which y; = (y;1, ... ,yip)T. To deal with p-dimensional
arrays, a prior for Fj is assumed so to borrow informations across sites and to learn the joint
null probability Pj. This feature is not yet implemented in the msBP package. A similar
multiscale approach to perform two-sample comparison has been proposed and successfully
applied in the multivariate context in Ma and Wong (2011) extending the optional Pélya
tree prior of Wong and Ma (2010). The latter approach is able to jointly perform testing of
two sample difference and learn the underlying structure of the difference. Anther proposal
connected to Pélya Trees and dealing with more than two groups, censored, and multivariate
data, is discussed in Chen and Hanson (2014). See also Holmes, Caron, Griffin, and Stephens
(2015) for a related approach.

3. The C++ implementation

All the main functions of the msBP package are written in C+4 and most of them rely on
the bintree data structure, i.e.,

struct bintree

{
double data;
struct bintree *left;
struct bintree *right;
}s

The bintree structure is composed of a root (or parent node), each of which stores data
and the two links to the leaves (or daughters nodes). Clearly each leaf connects to two other
leaves and it is the beginning of a new, nested, binary tree. A binary tree is a well known
data structure with appealing characteristics in computer science. For example, it is possible
to easily access and insert data into a binary tree using search and insert functions recursively
called on successive leaves. This data structure will be used to store the random variables
Ssn and Ry, the weights in the mixtures, and other sample statistics. Basic functions to
handle the bintree data structure, such as create a tree, write and extract the data on a
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Figure 2: Behavior of the tree2array function. Arrows denote the branch of the original
binary tree, with continuous line for the right daughter and dashed line for the left daughter.
The number inside the array cells represent the original tree indexes.

given node of a tree and so forth, have also been implemented. Among them, the following
functions

void tree2array(struct bintree *node, double *array, ...)
void array2tree(double *a, int maxScale, struct bintree *node)

allow for the conversion of a binary tree structure into an array and vice versa, and have been
written to allow the input-output communication of R and C++ via the .C function. The first
two arguments of the tree2array function are the pointers to the binary tree and to the array
in which to write the values of the tree. Note that the array needs to be initialized before the
use of tree2array and needs to have at least length 2° — 1, where s is the maximum depth of
the tree. The tree2array function writes the array as described in Figure 2. The arguments
of array2tree, instead, are the pointer to the array, an integer denoting the maximum scale
of the binary tree, and the pointer to the binary tree structure to populate. In this latter case
the binary tree structure need only to be initialized and the function takes care of growing
the tree up to the desired depth.

In addition to the basic functions early described, the msBP package features more complex
functions. However, most of them are then wrapped into R scripts and define the working
functions of the package itself. Thus we do not further describe them here.

4. Usage of the msBP package

The main functions of msBP are msBP.Gibbs, which allows to perform nonparametric density
estimation using Gibbs sampler, and msBP. test which allows to perform Bayesian multiscale
testing of group differences. In this section of the article we provide examples of how to use
these functions. In the first subsections, basic and generic functions to handle the multiscale
prior, to sample from a msBP process, and to plot the results, are first described. Then, in
the second and the third subsections, msBP.Gibbs and msBP.test are extensively discussed.
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4.1. Basic and generic functions

The msBP package introduces two new R object class. The first is the binaryTree class.
An object of the binaryTree class represents a finite-depth binary tree. It consists of a list
containing T and max.s, the binary tree itself and an integer denoting its depth, respectively.
Specifically, T is a list where each element is a vector containing the values of the nodes at
a given scale. A binary tree of depth 3 containing the integers from 1 to 15 can be obtained
with

R> tree <- structure(list( T = 1ist(1, c(2, 3), c(4, 5, 6, 7),
+ c(8, 9, 10, 11, 12, 13, 14, 15)), max.s = 3), class = "binaryTree")

The tree structure can be converted into a vector using the tree2vec function
R> x <- tree2vec(tree)

while the vec2tree(x) populates a binary tree with the values contained into the vector x.
The latter function is ideally constructed for vectors of length 2™ — 1, where n € N. However
if the length [ # 2" — 1 for any n, the function creates a tree up to scale [logy(|1/2] + 1)]
with the last leaves populated with NA. This object class will be largely used by other higher
level functions, since the approach described in Section 2, deals with several binary trees such
as Equations 3, 4 and so forth. A general plot function is available for the binaryTree
object class. The results of plot(tree, ...) is a cartoon of a binary tree with the root
node at the top. As additional arguments, the function features: value, size, and white. If
value = TRUE the numerical values of each node appears inside the node (up to the number
of digits specified by precision); if size = TRUE the size of the nodes are proportional to
their values; if white = TRUE the background color of the nodes is white, otherwise it is in
color scale (default gray.colors). Figure 3 shows the output of some combinations.

The second object class implemented in the msBP package is the msBPTree class. An object
of the class msBPTree is a list of 5 elements that represent a random draw from a msBP(a, b)
process. The first two elements are the trees of the stopping and descending-to-the-right
probabilities, described by Equation 3. Both are object of the class binaryTree with the
same max.s. The third and fourth argument are the hyperparameters of the msBP prior,
namely a and b. The last value is an integer with the maximum depth of both trees. To
simulate a random density from a msBP(a,b) prior truncated at scale 3, the msBP.rtree
function can be used as

R> set.seed(17012014)
R> draw <- msBP.rtree(a = 5, b = 1, max.s = 3)

Note that the last scale have S, ;, = 1. The induced trees of probabilities, calculated by means
of (4) can be obtained with the msBP.compute.prob function as

R> weights <- msBP.compute.prob(draw)

and the results can be plotted using plot, as it is an object of the class binaryTree. An
additional argument root = FALSE let Sp 1 = 0. This can be used, for example, in the settings
of Section 2.2. The induced random density can be drawn on a finite grid of length n.points
of its domain with the function msBP.pdf, i.e.,
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Figure 3: Output of the plot(tree) function with (a) default arguments values, (b) size
= TRUE, (c) white = FALSE, and (d) white = FALSE, size = TRUE, value = FALSE,
col.grid = heat.colors(15).
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R> density <- msBP.pdf(weights, n.points = 100)
R> plot(density$dens ~ density$y, xlab = "y", ylab = "Density", ty = '1')

Given a random density from a msBP(a,b) process, it is also possible to generate a sample
of size n from that density. To this end we use the Algorithm 1, implemented in C++ and
wrapped into R via the msBP.rsample function. The msBP.rsample needs two parameters
only: the sample size n and an object of the msBPTree class.

Algorithm 1 Generating a random sample from a random density having an msBP prior

fori=1,...,ndo
loop = TRUE;
S; :O, hl = 1;

while loop do
let 1loop = FALSE with probability S; .
if loop then
with probability R, 5, let h; = 2h;
with probability 1 — Ry, p,,, let h; = 2h; — 1
end if
end while
generate y; ~ Be(h;, 2% — h; + 1).
end for

4.2. Density estimation

Posterior density estimation under the msBP setup relies on Markov chain Monte Carlo
(MCMC) sampling algorithm. We briefly recall the algorithm proposed by Canale and Dun-
son (2016) in what follows. It basically consists of two steps: (i) multiscale cluster allocation
conditionally on the current values of the parameters {7}, and (ii) update of the proba-
bilities parameters in the mixture, conditionally on the cluster allocation. Such structure is
typical of mixture models in which a first data augmentation allocates the observation to a
mixture component and conditionally on such allocation the parameters of each component
are updated (Bush and MacEachern 1996; MacEachern and Miiller 1998; Ishwaran and James
2001).

Suppose that s; and h; are the scale and the node within scale labels for subject 7. Condi-
tionally on the binary tree of weights {5}, the posterior probability of subject ¢ belonging
to node (s, h) is simply

pr(s; = s, h; = hly;, ms ) o s, Be(y; h, 2° — h + 1).

Now rewrite model (2) as
00 2%
f(y) = Z Ts Z ﬁs,hBe(y; h7 2° —h+ 1)7
s=0 h=1

where 7y = 2,2;1 Tsh, and Tgp, = g p/ms. The cluster allocation uses a modification of the
slice sampler of Kalli, Griffin, and Walker (2011) and is reported in Algorithm 2.
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Algorithm 2 Multiscale cluster posterior allocation for ith subject

for each scale s do .
calculate 7y = Zi:l Ts,ht
end for
simulate w;|ys, si ~ U(0, ms, );
for each scale s do
if 5 > u; then
for h=1,...2° do

compute s p = Ts,n/Ts
end for .
compute pr(s; = s|u;, y;) X Zi:l 7s,nBe(yi; h,2° — h + 1)
else
pr(si = slui,yi) = 0;
end if
end for

sample s; with probability pr(s; = s|us,ys) o< I(s : s > us) ZZ;I 7s,nBe(yi; h,2° — h + 1);
sample h; with probability pr(h; = h|y:, si) x s, nBe(ys; h, 2% — h + 1);

Algorithm 2 is implemented in the msBP.postCluster function. It requires two arguments:
the sample of observations y and a binary tree of weights weights. The function makes a call
to the postCluster C++ subroutine. The output of the function is a matrix with length (y)
rows and two columns of cluster labels: the first denoting the scale and the second denoting
the node within a given scale. The same C++ subroutine called by msBP.postCluster is
called at each iteration of the MCMC sampler as described below.

Conditionally on the cluster allocations, the stopping and descending-right probabilities can
be updated from their full conditional posteriors, namely:

Ss,h ~ Be(l + Ng,hy @+ Vs p — ns,h)v Rs,h ~ Be(b + 7sh; b+ Vs,h — Ns,h — Ts,h)- (8)

Calculation of v, and 7,5 can be performed via the msBP.nrvTrees function, a wrap-
per calling the allTree C++ subroutine. The input of msBP.nrvTrees is the output of
msBP.postCluster, i.e., a matrix with 2 columns and a number of rows equal to the sample
size. The output of msBP.nrvTrees is a list containing tree objects of the class binaryTree.

The main function implemented in the msBP package is the msBP.Gibbs function, perform-
ing the actual MCMC simulation from the posterior. The function basically iterates between
cluster allocation, using the postCluster C++ subroutine and parameter updating, calculat-
ing first the elements ng p, 75 p, and vg, by means of the al1Tree C++ subroutine, and then
using Equation 8. The Markov chains sampling is written in C++ but additional R language
is used to initialize the function.

To describe the use of msBP.Gibbs, we will now walk the reader through the entire process
of density estimation under the msBP setup. We will start showing how to elicit prior in-
formations, how to run the sampler, and how to analyze the output of the analysis. We do
this using the famous Galaxy dataset (Roeder 1990). The dataset consists on the velocity of
82 galaxies. The histogram of the speeds reveals that the data are clearly multimodal. This
feature supports the Big Bang theory, as the different modes of density can be though as
clusters of galaxies moving at different speed.

R> data("galaxy")
R> galaxy <- data.frame(galaxy)
R> x <- galaxy$speed / 1000
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We start by discussing prior elicitation. In Section 2.1 we assumed that gg is our a prior guess
for g, the density of x and we want to center our msBP process in such prior. We discussed
that if Gy and G L are the corresponding CDF and inverse CDF, we can first transform
the data with y = Go(x) € (0,1), and then estimate f ~ msBP(a,b). It can be shown (see
Canale and Dunson 2016) that the expectation E{F(A)} = A(A), where \(A) is the Lebesgue
measure over the set A and F'(A) = [, f. Since the prior for f is centered about the uniform,
the prior on ¢ is automatically centered in gg. To allow this from a practical viewpoint we
can use the argument g0 of the msBP.Gibbs function. The package features four different
prior guesses for gg: g0 = c("uniform", "normal", "gamma", "empirical") for uniform,
normal, gamma and, following an empirical approach, the kernel density estimate. As default
choice the function implements the "empirical" specification. For "normal" and "gamma",
the parameters can be fixed or additional prior distribution can be assumed. The former
approach is adopted using gOpar a vector of size two corresponding to mean and standard
deviation of the normal, or shape and rate parameters for the gamma, respectively. The latter
approach is adopted using hyper$hyperpriors$g0 = TRUE. In this case the model becomes

y:Go(ZL‘, 9)7 QNPT(Q),

and thus an additional step of Gibbs sampling to simulate 6 is necessary. The full conditional
posterior of 6 is simply

n

pr(0 | =) oc pr(8) [ f(Go(x:); 0)go(xi; 0),

i=1
and to sample from the latter full conditional posterior distribution the package uses a
Metropolis-Hastings step (Hastings 1970) with proposal equal to the prior. Currently only
g0 = "normal" is allowed with normal-inverse-gamma prior.

Then one has to specify the values of a and b, the hyperparameters of the msBP prior.
The hyperparameter a controls the decline in probabilities over scales. Let S denotes
the scale of ith observation. It can be showed that E(S®)) = @ which means that for
small a, high probability is placed on coarse scales, leading to smoother densities and as
a increases, finer scale densities will be weighted more, leading to spiker realizations. Ad-
ditional hyperpriors for a and b can be assumed. Clearly, this will lead to have additional
sampling steps in the Gibbs sampling algorithm. In the msBP.Gibbs function this can be
achieved letting hyper$hyperpriors$a = TRUE and hyper$hyperpriors$b = TRUE, respec-
tively. Specifically the algorithm implements a ~ Ga(f,v) and b ~ Ga(d, A). This leads to
the following conditional posterior distributions:

S/

25
al— ~ Ga (6 + 25+ 1,v— Z Z log(1 — Ss,h)) ) 9)

s=0 h=1
and
bé*l s 2%
r(b|—) x« ——————exp<ib log{Rs (1 — R, - A , 10
prO1-) o ey o9 40 | 1 L lout a1~ ) (10)

where s’ is the maximum occupied scale and B(p, q) is the Beta function. To sample from
the conditional posterior distribution of b, a Griddy-Gibbs approach over the grid defined by
hyper$hyperpar$gridB is used (see Ritter and Tanner (1992)). For sake of illustration we
run and discuss msBP.Gibbs under the following different prior specifications:

11
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R> hyperl <- list(hyperprior = list(a = TRUE, b = TRUE, g0 = FALSE),
+ hyperpar = list(beta = 50, gamma = 5, delta = 10, lambda = 1,

+ gridB = seq(0, 20, length = 30)))

R> g0_1 <- "empirical"

R> hyper2 <- list(hyperprior = list(a = TRUE, b = TRUE, g0 = FALSE),
+ hyperpar = list(beta = 50, gamma = 5, delta= 10, lambda = 1,

+ gridB = seq(0, 20, length = 30)))

R> g0_2 <- "normal"

R> gOpar_2 <- c(21, 2.5)

R> hyper2 <- list(hyperprior = list(a = TRUE, b = TRUE, g0 = TRUE),
+ hyperpar = list(beta = 50, gamma = 5, delta = 10, lambda = 1,

+ gridB = seq(0, 20, length = 30),

+ mu0 = 21, kappaO = 0.1, alphaO = 1, beta0 = 20))

R> g0_3 <- "normal"

R> gOpar_3 <- c(21, 2.5)

which correspond to: (i) go assumed to be equal to the empirical kernel density estimate,
(ii) go assumed to be normal with mean 21 and variance 2.5, and (iii) go assumed to be
normal with random mean and variance with prior (1, 0%) ~ N(, pto, koo?)I-Ga(o?; ap, Bo)-
In all cases the parameters of the msBP prior are assumed to be random with hyperprior
distributions a ~ Ga(50,5), and b ~ Ga(10,1), with the prior for b evaluated on a grid from
0 to 20 of length 30.

The number of iterations to perform in the MCMC can be set via the function argument
mcme, a list including nb, the number of burn-in iterations, nrep the total number of iterations
(including nb), and ndisplay the multiple of iterations to be displayed on screen while the
C++ routine is running:

R> mcmc <- list(nrep = 10000, nb = 5000, ndisplay = 1000)

To obtain a posterior estimate of the density, the grid argument need to be fixed. It consists
of a named list giving the parameters for plotting the posterior mean density over a finite
grid of points. It must include low and upp giving the lower and upper bound respectively of
the grid and n.points, an integer giving the number of evaluation points.

R> grid <- list(n.points = 150, low = 5, upp = 38)

Additional arguments to be set are maxS and printing. The former is an upper bound for the
binary trees involved in the MCMC, and the latter is a control argument. If printing = TRUE
the C++ routine prints on standard output what is doing every ndisplay iterations. The
default choice is printing = FALSE. With the following expressions we run the MCMC al-
gorithm:

R> set.seed(17012014)

R> fit.msbp.1 <- msBP.Gibbs(speeds, a = 10, b = 10, g0 = g0_1,
+ mcmc = mcmc, hyper = hyperl, maxS = 5, grid = grid)

R> fit.msbp.2 <- msBP.Gibbs(speeds, a = 10, b = 10, g0 = g0_2,
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+ gOpar = gOpar_2, mcmc = mcmc, hyper = hyper2, maxS = 5, grid = grid)
R> fit.msbp.3 <- msBP.Gibbs(speeds, a = 10, b = 10, g0 = g0_3,
gOpar = gOpar_3, mcmc = mcmc, hyper = hyper3, maxS = 5, grid = grid)

The function output is a named list containing four objects:

e density: a named list containing postMeanDens, the posterior mean density estimate
evaluated over xDens and the related lower and upper pointwise 95% credible bands
(postLowDens and postUppDens).

o mcmc: a named list containing the MCMC chains: dens is a matrix (nrep-nb) X n.grid
containing the values of the density for each MCMC iteration, a and b are vectors
containing the MCMC replicates for the two msBP parameters (if hyperprior$a or
hyperprior$b are set as TRUE), scale is a matrix where each column is a MCMC
sample of the total mass for each scale, R and S are matrices where each column in the
tree2vec form of the corresponding trees, weights is a matrix where each column is
the tree2vec form of the corresponding tree of weights, s and h are matrices where each
column is the MCMC chain for the node labels for a subject, mu and sigma are vectors
containing the MCMC replicates for the two parameters of the normal transformation
of the data (if hyper$hyperprior$g0 was set to TRUE)

e postmean: a named list containing posterior means over the MCMC samples of a, b, and
of all binary trees. If hyper$hyperprior$g0 was set to TRUE, the named list contains
also the posterior means of the two parameters of the normal transformation of the
data.

e fit: a named list containing the LPML, mean, and median of the log CPO.

The histogram of the raw data and the plot of the posterior mean density and the related
95% credible bands for the first specification is reported in Figure 4.

To assess the convergence of the MCMC, one can have visual inspections of the traceplots of
the chains for some parameter of interest. In general fit.msbp.1$mcmc contains the MCMC
chains of all the model’s parameters. For example, if hyperpriors on the msBP prior pa-
rameters have been assumed, one can monitor the convergence of the chains for a and b
with

'l1', main = "Traceplot for a", ylab = "")
"Traceplot for b", ylab = "")

R> plot(fit.msbp.1$mcmc$a, type
R> plot(fit.msbp.1$mcmc$b, type = '1', main

and test for convergence using, for example, the Geweke (1992) diagnostics implemented in
the coda package (Plummer et al. 2006), i.e.,

R> library("coda")
R> geweke.diag(fit.msbp.1$mcmc$a)

Fraction in 1st window 0.1
Fraction in 2nd window 0.5

varl
-0.1161
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Figure 4: Posterior mean density for the galaxy dataset.
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Figure 5: Posterior draw for a and b.

> geweke.diag(fit.msbp.1$mcmc$b)

Fraction in 1st window
Fraction in 2nd window

o O
(o2

varl
-1.769

We finally compare the fit obtained with the different prior specifications with the fit obtained
running DPdensity and PTdensity of DPpackage. As prior specification for the latter models
we rely on the specifications described in the documentation of the package, reported for sake
of completeness in online supplements of this article. The comparison is based on the log
pseudo-marginal likelihood (LPML) criterion. The LPML is a leave-one-out cross validatory
measure based on the predictive densities, see Green and Richardson (2001) and Gelfand
and Dey (1994) for details. The three msBP specifications have a LPML of —215, —298,
and —265, respectively. The best performance is obtained using the first ??rior specification
which centers the prior expected density in the kernel density estimate of the raw data. The
latter is practically equivalent to the best fits obtained with DPdensity and PTdensity, equal
to —210 and to —215, respectively.

15
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4.3. Inference in group differences

The function msBP.test performs multiscale hypothesis testing of difference in the distri-
bution of two groups. It exploits the closed form expression for the conditional posterior
probability for H in Equation 5. However, since it cannot be directly used due to the depen-
dence on the unknown multiscale clustering structure, the function relies on a Gibbs sampling
algorithm. Again, the algorithm is made of two steps: multiscale cluster allocation, and up-

date of the tree of weights. For node h at scale s, let wg?,z denote the weight under Hj and

ngfbd) for d = 0,1 denote the group-specific weights under H7. The allocation of subject i, at
each iteration, will be made via msBP.postCluster using the following set of weights:

di S 'S S S S S 7di
%) = P(HSING) Ny )mi) + {1 — PHSING) N )y, (11)

S S

Then, at a given iteration the quantities in Equations 6-7 can be calculated explicitly, and
used to update the stopping and descending probabilities.

We describe the parameters and the behavior of the function via the Indian Liver dataset,
available at the UCI Machine Learning repository (Bache and Lichman 2013). This data set
contains data on 580 subjects of which 413 liver patients and 167 non-liver patients. Subjects
with liver problems typically register higher levels of bilirubin in their blood and thus we want
to test if there is a difference in the distribution of the relative direct bilirubin, calculated
as the ratio of the direct bilirubin over the total bilirubin. An histogram of the raw data is
reported in Figure 6, Panel (a).

The msBP. test function, in addition to a vector of observations and to a vector of group labels,
requires prior values for a, b, and for the probability of Hy. The choice of the hyperparameters
a and b can be made using prior information. In what follows, however, the choice is done with
a two-step procedure. First, the density of the pooled dataset is fitted with the msBP.Gibbs
function assuming hyperpriors for a and b

R> mcmc.test = list(nrep = 8000, nb = 4000, ndisplay = 1000)

R> hyper.test = list(hyperprior = list(a = TRUE, b = TRUE),

+ hyperpar = list(beta = 5, gamma = 0.5, delta = 1, lambda = 1))
R> set.seed(17012014)

R> dens.liver <- msBP.Gibbs(liver$dirbil, a = 10, b = 10, g0 = "unif",
+ mcmc = mcmc.test, hyper = hyper.test, maxScale = 5)

Then the posterior mean of a and b are used as plug-in estimates for the testing. We fix the
prior probability of Hy to 0.5 in order to equal weights the null and the alternative, and we
fix the upper bound for the scales to 5. The function can be executed via:

R> test.liver <- msBP.test(liver$dirbil, a = dens.liver$postmeans$a,
+ b = dens.liver$postmean$b, group = liver$group,
+ priorHO = 0.5, mcmc = mcmc.test, plot.it = TRUE, maxScale = 5)

The function’s output is a list containing all the MCMC replicates for pr(H§|—) along with
their posterior means and the global Bayes factor

_ pr(Ho | )

BF .
pr(H: | )
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Figure 6: Histogram of the raw data (a) and posterior mean of pr(Hos | —) as function of s
for the Indian liver dataset.

Figure 6 (b) reports the posterior mean of the global null hypothesis, in function of the scale.
The differences between the two groups are minimal at the first scale but start to become
evident for increasing scales.

5. Conclusions

We have presented a detailed introduction to the R package msBP, which implements a
recently introduced multiscale stick-breaking prior and allows to perform density estimation
and to test for differences in the distribution of two groups. The package implements also
basic and generic functions to handle the involved multiscale trees structures.
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