
Package ‘mvp’
March 19, 2023

Type Package

Title Fast Symbolic Multivariate Polynomials

Version 1.0-14

Depends methods,magrittr, mpoly (>= 1.1.0)

Suggests knitr,rmarkdown, microbenchmark,testthat,spray

VignetteBuilder knitr

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

Description Fast manipulation of symbolic multivariate polynomials
using the 'Map' class of the Standard Template Library. The package
uses print and coercion methods from the 'mpoly' package (Kahle
2013, ``Multivariate polynomials in R'', The R Journal, 5(1):162), but
offers speed improvements. It is comparable in speed to the 'spray'
package for sparse arrays, but retains the symbolic benefits of
'mpoly'. To cite the package in publications, use Hankin 2022
<doi:10.48550/ARXIV.2210.15991>. Uses 'disordR' discipline.

License GPL (>= 2)

Imports Rcpp (>= 1.0-7), partitions, magic, digest, disordR (>= 0.9),
numbers

LinkingTo Rcpp

URL https://github.com/RobinHankin/mvp

BugReports https://github.com/RobinHankin/mvp/issues

NeedsCompilation yes

Author Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Repository CRAN

Date/Publication 2023-03-19 22:20:07 UTC

R topics documented:
mvp-package . 2
allvars . 4

1

https://doi.org/10.48550/ARXIV.2210.15991
https://github.com/RobinHankin/mvp
https://github.com/RobinHankin/mvp/issues
https://orcid.org/0000-0001-5982-0415

2 mvp-package

as.function.mvp . 5
coeffs . 5
constant . 8
deriv . 9
horner . 10
invert . 11
kahle . 12
knight . 13
lose . 14
lowlevel . 15
mpoly . 15
mvp . 16
ooom . 18
Ops.mvp . 18
print . 20
rmvp . 21
series . 22
special . 24
subs . 25
summary . 27
zero . 28

Index 30

mvp-package Fast Symbolic Multivariate Polynomials

Description

Fast manipulation of symbolic multivariate polynomials using the ’Map’ class of the Standard Tem-
plate Library. The package uses print and coercion methods from the ’mpoly’ package (Kahle 2013,
"Multivariate polynomials in R", The R Journal, 5(1):162), but offers speed improvements. It is
comparable in speed to the ’spray’ package for sparse arrays, but retains the symbolic benefits of
’mpoly’. To cite the package in publications, use Hankin 2022 <doi:10.48550/ARXIV.2210.15991>.
Uses ’disordR’ discipline.

Details

The DESCRIPTION file:

Package: mvp
Type: Package
Title: Fast Symbolic Multivariate Polynomials
Version: 1.0-14
Authors@R: person(given=c("Robin", "K. S."), family="Hankin", role = c("aut","cre"), email="hankin.robin@gmail.com", comment = c(ORCID = "0000-0001-5982-0415"))
Depends: methods,magrittr, mpoly (>= 1.1.0)
Suggests: knitr,rmarkdown, microbenchmark,testthat,spray
VignetteBuilder: knitr

mvp-package 3

Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>
Description: Fast manipulation of symbolic multivariate polynomials using the ’Map’ class of the Standard Template Library. The package uses print and coercion methods from the ’mpoly’ package (Kahle 2013, "Multivariate polynomials in R", The R Journal, 5(1):162), but offers speed improvements. It is comparable in speed to the ’spray’ package for sparse arrays, but retains the symbolic benefits of ’mpoly’. To cite the package in publications, use Hankin 2022 <doi:10.48550/ARXIV.2210.15991>. Uses ’disordR’ discipline.
License: GPL (>= 2)
Imports: Rcpp (>= 1.0-7), partitions, magic, digest, disordR (>= 0.9), numbers
LinkingTo: Rcpp
URL: https://github.com/RobinHankin/mvp
BugReports: https://github.com/RobinHankin/mvp/issues
Author: Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Index of help topics:

Ops.mvp Arithmetic Ops Group Methods for 'mvp' objects
allvars All variables in a multivariate polynomial
as.function.mvp Functional form for multivariate polynomials
coeffs Functionality for 'coeffs' objects
constant The constant term
deriv Differentiation of 'mvp' objects
horner Horner's method
invert Replace symbols with their reciprocals
kahle A sparse multivariate polynomial
knight Chess knight
lose Drop empty variables
lowlevel Low level functions
mpoly Conversion to and from mpoly form
mvp Multivariate polynomials, mvp objects
mvp-package Fast Symbolic Multivariate Polynomials
ooom One over one minus a multivariate polynomial
print.mvp Print methods for 'mvp' objects
rmvp Random multivariate polynomials
series Decomposition of multivariate polynomials by

powers
special Various functions to create simple multivariate

polynomials
subs Substitution
summary Summary methods for mvp objects
zero The zero polynomial

Author(s)

NA

Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>

Examples

(p <- as.mvp("1+x+x*y+x^5"))

p + as.mvp("a+b^6")

4 allvars

p^3

subs(p^4,x="a+b^2")
aderiv(p^2,x=4)
horner(p,1:3)

allvars All variables in a multivariate polynomial

Description

Returns a character vector containing all the variables present in a mvp object.

Usage

allvars(x)

Arguments

x object of class mvp

Note

The character vector returned is not in any particular order

Author(s)

Robin K. S. Hankin

Examples

p <- rmvp(5)
p
allvars(p)

as.function.mvp 5

as.function.mvp Functional form for multivariate polynomials

Description

Coerces a multivariate polynomial into a function

Usage

S3 method for class 'mvp'
as.function(x, ...)

Arguments

x Multivariate polynomial

... Further arguments (currently ignored)

Author(s)

Robin K. S. Hankin

Examples

p <- as.mvp("1+a^2 + a*b^2 + c")
p
f <- as.function(p)
f

f(a=1)
f(a=1,b=2)
f(a=1,b=2,c=3) # coerces to a scalar
f(a=1,b=2,c=3,lose=FALSE) # formal mvp object

coeffs Functionality for coeffs objects

Description

Function coeffs() allows arithmetic operators to be used for the coefficients of multivariate poly-
nomials, bearing in mind that the order of coefficients is not determined. It uses the disord class
of the disordR package.

https://CRAN.R-project.org/package=disordR

6 coeffs

Usage

coeffs(x)
vars(x)
powers(x)
coeffs(x) <- value

Arguments

x Object of class disord

value Object of class disord, or length-1 numeric vector

Details

(much of the discussion below appears in the vignette of the disordR package).

Accessing elements of an mvp object is problematic because the order of the terms of an mvp object
is not well-defined. This is because the map class of the STL does not specify an order for the key-
value pairs (and indeed the actual order in which they are stored may be implementation dependent).
The situation is similar to the hyper2 package which uses the STL in a similar way.

A coeffs object is a vector of coefficients of a mvp object. But it is not a conventional vector; in
a conventional vector, we can identify the first element unambiguously, and the second, and so on.
An mvp is a map from terms to coefficients, and a map has no intrinsic ordering: the maps

{x -> 1, y -> 3, xy^3 -> 4}

and

{xy^3 -> 4, x -> 1, y -> 3}

are the same map and correspond to the same multinomial (symbolically, x+3y+4xy3 = 4xy3 +
x + 3y). Thus the coefficients of the multinomial might be c(1,3,4) or c(4,1,3), or indeed any
ordering. But note that any particular ordering imposes an ordering on the terms. If we choose
c(1,3,4) then the terms are x,y,xy^3, and if we choose c(4,1,3) the terms are xy^3,x,y.

In the package, coeffs() returns an object of class disord. This class of object has a slot for the
coefficients in the form of a numeric R vector, but also another slot which uses hash codes to prevent
users from misusing the ordering of the numeric vector.

For example, a multinomial x+2y+3z might have coefficients c(1,2,3) or c(3,1,2). Package id-
iom to extract the coefficients of a multivariate polynomial a is coeffs(a); but this cannot return a
standard numeric vector because a numeric vector has elements in a particular order, and the coef-
ficients of a multivariate polynomial are stored in an implementation-specific (and thus unknown)
order.

Suppose we have two multivariate polynomials, a as defined as above with a=x+2y+3z and b=x+3y+4z.
Even though a+b is well-defined algebraically, and coeffs(a+b) will return a well-defined mvp_coeffs
object, idiom such as coeffs(a) + coeffs(b) is not defined because there is no guarantee that
the coefficients of the two multivariate polynomials are stored in the same order. We might have
c(1,2,3)+c(1,3,4)=c(2,5,7) or c(1,2,3)+c(1,4,3)=c(2,6,6), with neither being more “cor-
rect” than the other. In the package, coeffs(a) + coeffs(b) will return an error. In the same

https://CRAN.R-project.org/package=disordR

coeffs 7

way coeffs(a) + 1:3 is not defined and will return an error. Further, idiom such as coeffs(a)
<- 1:3 and coeffs(a) <- coeffs(b) are not defined and will return an error. However, note that
coeffs(a) + coeffs(a) and coeffs(a)+coeffs(a)^2 are fine, these returning a mvp_coeffs ob-
ject specific to a.

Idiom such as coeffs(a) <- coeffs(a)^2 is fine too, for one does not need to know the order of the
coefficients on either side, so long as the order is the same on both sides. That would translate into
idiomatic English: “the coefficient of each term of a becomes its square”; note that this operation
is insensitive to the order of coefficients. The whole shebang is intended to make idiom such as
coeffs(a) <- coeffs(a)%%2 possible (so we can manipulate polynomials over finite rings, here
Z/2Z).

The replacement methods are defined so that an expression like coeffs(a)[coeffs(a) > 5] <- 5
works as expected; the English idiom would be “Replace any coefficient greater than 5 with 5”.

To fix ideas, consider a <- rmvp(8). Extraction presents issues; consider coeffs(a)<5. This object
has Boolean elements but has the same ordering ambiguity as coeffs(a). One might expect that
we could use this to extract elements of coeffs(a), specifically elements less than 5. However,
coeffs(a)[coeffs(a)<5] in isolation is meaningless: what can be done with such an object?
However, it makes sense on the left hand side of an assignment, as long as the right hand side is a
length-one vector. Idiom such as

• coeffs(a)[coeffs(a)<5] <- 4+coeffs(a)[coeffs(a)<5]

• coeffs(a) <- pmax(a,3)

is algebraically meaningful (“Add 4 to any element less than 5”; “coefficients become the pairwise
maximum of themselves and 3”). The disordR package uses pmaxdis() rather than pmax() for
technical reasons.

So the output of coeffs(x) is defined only up to an unknown rearrangement. The same considera-
tions apply to the output of vars(), which returns a list of character vectors in an undefined order,
and the output of powers(), which returns a numeric list whose elements are in an undefined order.
However, even though the order of these three objects is undefined individually, their ordering is
jointly consistent in the sense that the first element of coeffs(x) corresponds to the first element
of vars(x) and the first element of powers(x). The identity of this element is not defined—but
whatever it is, the first element of all three accessor methods refers to it.

Note also that a single term (something like 4a^3*b*c^6) has the same issue: the variables are not
stored in a well-defined order. This does not matter because the algebraic value of the term does not
depend on the order in which the variables appear and this term would be equivalent to 4b*c^6*a^3.

Author(s)

Robin K. S. Hankin

Examples

(x <- 5+rmvp(6))
(y <- 2+rmvp(6))

coeffs(x)^2
coeffs(y) <- coeffs(y)%%3 # fine, all coeffs of y now modulo 3

https://CRAN.R-project.org/package=disordR

8 constant

y

coeffs(y) <- 4
y

Not run:
coeffs(x) <- coeffs(y) # not defined, will give an error
coeffs(x) <- seq_len(nterms(x)) # not defined, will give an error

End(Not run)

constant The constant term

Description

Get and set the constant term of an mvp object

Usage

S3 method for class 'mvp'
constant(x)
S3 replacement method for class 'mvp'
constant(x) <- value
S3 method for class 'numeric'
constant(x)
is.constant(x)

Arguments

x Object of class mvp

value Scalar value for the constant

Details

The constant term in a polynomial is the coefficient of the empty term. In an mvp object, the map
{} -> c, implies that c is the constant.

If x is an mvp object, constant(x) returns the value of the constant in the multivariate polynomial;
if x is numeric, it returns a constant multivariate polynomial with value x.

Function is.constant() returns TRUE if its argument has no variables and FALSE otherwise.

Author(s)

Robin K. S. Hankin

deriv 9

Examples

a <- rmvp(5)+4
a
constant(a)
constant(a) <- 33
a

constant(0) # the zero mvp

deriv Differentiation of mvp objects

Description

Differentiation of mvp objects

Usage

S3 method for class 'mvp'
deriv(expr, v, ...)
S3 method for class 'mvp'
aderiv(expr, ...)

Arguments

expr Object of class mvp

v Character vector. Elements denote variables to differentiate with respect to

... Further arguments, ignored in deriv() but specifies the differentials in aderiv()

Details

Function deriv(S,v) returns ∂rS
∂v1∂v2...∂vr

.

Function aderiv() uses the ellipsis construction with the names of the argument being the variable
to be differentiated with respect to. Thus aderiv(S,x=1,y=2) returns ∂3S

∂x∂y2 .

Author(s)

Robin K. S. Hankin

See Also

taylor

10 horner

Examples

p <- rmvp(10,9,9,letters[1:4])
p
deriv(p,letters[1:3])
deriv(p,rev(letters[1:3])) # should be the same

aderiv(p,a=1,b=2,c=1)

verify the chain rule:
x <- rmvp(7,symbols=6)
v <- allvars(x)[1]
s <- as.mvp("1 + y - y^2 zz + y^3 z^2")
LHS <- subsmvp(deriv(x,v)*deriv(s,"y"),v,s) # dx/ds*ds/dy
RHS <- deriv(subsmvp(x,v,s),"y") # dx/dy

LHS - RHS # should be zero

horner Horner’s method

Description

Horner’s method for multivariate polynomials

Usage

horner(P,v)

Arguments

P Multivariate polynomial

v Numeric vector of coefficients

Details

Given a polynomial

p(x) = a0 + a1 + a2x
2 + · · ·+ anx

n

it is possible to express p(x) in the algebraically equivalent form

p(x) = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·))

which is much more efficient for evaluation, as it requires only n multiplications and n additions,
and this is optimal. But this is not implemented here because it’s efficient. It is implemented
because it works if x is itself a (multivariate) polynomial, and that is the second coolest thing ever.
The coolest thing ever is the Reduce() function.

invert 11

Author(s)

Robin K. S. Hankin

See Also

ooom

Examples

horner("x",1:5)
horner("x+y",1:3)

w <- as.mvp("x+y^2")
stopifnot(1 + 2*w + 3*w^2 == horner(w,1:3)) # note off-by-one issue

"x+y+x*y" %>% horner(1:3) %>% horner(1:2)

invert Replace symbols with their reciprocals

Description

Given an mvp object, replace one or more symbols with their reciprocals

Usage

invert(p, v)

Arguments

p Object (coerced to) mvp form
v Character vector of symbols to be replaced with their reciprocal; missing inter-

preted as replace all symbols

Author(s)

Robin K. S. Hankin

See Also

subs

Examples

invert("x")

(P <- as.mvp("1+a+6*a^2 -7*a*b"))
invert(P,"a")

12 kahle

kahle A sparse multivariate polynomial

Description

A sparse multivariate polynomial inspired by Kahle (2013)

Usage

kahle(n = 26, r = 1, p = 1, coeffs = 1, symbols = letters)

Arguments

n Number of different symbols to use

r Number of symbols in a single term

p Power of each symbol in each terms

coeffs Coefficients of the terms

symbols Alphabet of symbols

Author(s)

Robin K. S. Hankin

References

David Kahle 2013. “mpoly: multivariate polynomials in R”. R Journal, volume 5/1.

See Also

special

Examples

kahle() # a+b+...+z
kahle(r=2,p=1:2) # Kahle's original example

example where mvp runs faster than spray (mvp does not need a 200x200 matrix):
k <- kahle(200,r=3,p=1:3,symbols=paste("x",sprintf("%02d",1:200),sep=""))
system.time(ignore <- k^2)
#system.time(ignore <- mvp_to_spray(k)^2) # needs spray package loaded

https://CRAN.R-project.org/package=mpoly

knight 13

knight Chess knight

Description

Generating function for a chess knight on an infinite d-dimensional chessboard

Usage

knight(d, can_stay_still = FALSE)

Arguments

d Dimension of the board

can_stay_still Boolean, with default FALSE meaning that the knight is obliged to move and
FALSE meaning that it has the option of remaining on its square

Note

The function is a slight modification of spray::knight().

Author(s)

Robin K. S. Hankin

Examples

knight(2) # regular chess knight on a regular chess board
knight(2,TRUE) # regular chess knight that can stay still

Q: how many ways are there for a 4D knight to return to its starting
square after four moves?

A:
constant(knight(4)^4)

Q ...and how many ways in four moves or fewer?

A1:
constant(knight(4,TRUE)^4)

A2:
constant((1+knight(4))^4)

14 lose

lose Drop empty variables

Description

Convert an mvp object which is a pure constant into a scalar whose value is the coefficient of the
empty term.

A few functions in the package (currently subs(), subsy()) take a lose argument that behaves
much like the drop argument in base extraction.

Usage

S3 method for class 'mvp'
lose(x)

Arguments

x Object of class mvp

Author(s)

Robin K. S. Hankin

See Also

subs

Examples

(m1 <- as.mvp("1+bish +bash^2 + bosh^3"))
(m2 <- as.mvp("bish +bash^2 + bosh^3"))

m1-m2 # an mvp object
lose(m1-m2) # numeric

lowlevel 15

lowlevel Low level functions

Description

Various low-level functions that call the C routines

Usage

mvp_substitute(allnames,allpowers,coefficients,v,values)
mvp_substitute_mvp(allnames1, allpowers1, coefficients1, allnames2, allpowers2,

coefficients2, v)
mvp_vectorised_substitute(allnames, allpowers, coefficients, M, nrows, ncols, v)
mvp_prod(allnames1,allpowers1,coefficients1,allnames2,allpowers2,coefficients2)
mvp_add(allnames1, allpowers1, coefficients1, allnames2, allpowers2,coefficients2)
simplify(allnames,allpowers,coefficients)
mvp_deriv(allnames, allpowers, coefficients, v)
mvp_power(allnames, allpowers, coefficients, n)

Arguments

allnames,allpowers,coefficients,allnames1,allpowers1,coefficients1, allnames2,allpowers2,coefficients2,v,values,n,M,nrows,ncols

Variables sent to the C routines

Details

These functions call the functions defined in RcppExports.R

Note

These functions are not intended for the end-user. Use the syntactic sugar (as in a+b or a*b or a^n),
or functions like mvp_plus_mvp(), which are more user-friendly.

Author(s)

Robin K. S. Hankin

mpoly Conversion to and from mpoly form

Description

The mpoly package by David Kahle provides similar functionality to this package, and the functions
documented here convert between mpoly and mvp objects. The mvp package uses mpoly::mp() to
convert character strings to mvp objects.

https://CRAN.R-project.org/package=mpoly

16 mvp

Usage

mpoly_to_mvp(m)
S3 method for class 'mvp'
as.mpoly(x,...)

Arguments

m object of class mvp

x object of class mpoly

... further arguments, currently ignored

Author(s)

Robin K. S. Hankin

Examples

x <- rmvp(5)

x == mpoly_to_mvp(mpoly::as.mpoly(x)) # should be TRUE

mvp Multivariate polynomials, mvp objects

Description

Create, test for, an coerce to, mvp objects

Usage

mvp(vars, powers, coeffs)
is_ok_mvp(vars,powers,coeffs)
is.mvp(x)
as.mvp(x)
S3 method for class 'character'
as.mvp(x)
S3 method for class 'list'
as.mvp(x)
S3 method for class 'mpoly'
as.mvp(x)
S3 method for class 'mvp'
as.mvp(x)
S3 method for class 'numeric'
as.mvp(x)

mvp 17

Arguments

vars List of variables comprising each term of an mvp object

powers List of powers corresponding to the variables of the vars argument

coeffs Numeric vector corresponding to the coefficients to each element of the var and
powers lists

x Object to be coerced to or tested for being class mvp

Details

Function mvp() is the formal creation mechanism for mvp objects. However, it is not very user-
friendly; it is better to use as.mvp() in day-to-day use.

Function is_ok_mvp() checks for consistency of its arguments.

Author(s)

Robin K. S. Hankin

Examples

mvp(list("x", c("x","y"), "a", c("y","x")), list(1,1:2,3,c(-1,4)), 1:4)

Note how the terms appear in an arbitrary order, as do
the symbols within a term.

kahle <- mvp(
vars = split(cbind(letters,letters[c(26,1:25)]),rep(seq_len(26),each=2)),
powers = rep(list(1:2),26),
coeffs = 1:26

)
kahle
again note arbitrary order of terms and symbols within a term

Standard arithmetic rules apply:

a <- as.mvp("1 + 4*x*y + 7*z")
b <- as.mvp("-7*z + 3*x^34 - 2*z*x")

a+b
a*b^2

(a+b)*(a-b) == a^2-b^2 # should be TRUE

18 Ops.mvp

ooom One over one minus a multivariate polynomial

Description

Uses Taylor’s theorem to give one over one minus a multipol

Usage

ooom(P,n)

Arguments

n Order of expansion

P Multivariate polynomial

Author(s)

Robin K. S. Hankin

See Also

horner

Examples

ooom("x",5)
ooom("x",5) * as.mvp("1-x") # 1 + O(x^6)

ooom("x+y",4)

"x+y" %>% ooom(5) %>% `-`(1) %>% ooom(3)

Ops.mvp Arithmetic Ops Group Methods for mvp objects

Description

Allows arithmetic operators to be used for multivariate polynomials such as addition, multiplication,
integer powers, etc.

Ops.mvp 19

Usage

S3 method for class 'mvp'
Ops(e1, e2)
mvp_negative(S)
mvp_times_mvp(S1,S2)
mvp_times_scalar(S,x)
mvp_plus_mvp(S1,S2)
mvp_plus_numeric(S,x)
mvp_eq_mvp(S1,S2)
mvp_modulo(S1,S2)

Arguments

e1,e2,S,S1,S2 Objects of class mvp

x Scalar, length one numeric vector

Details

The function Ops.mvp() passes unary and binary arithmetic operators “+”, “-”, “*” and “^” to the
appropriate specialist function.

The most interesting operator is “*”, which is passed to mvp_times_mvp(). I guess “+” is quite
interesting too.

Value

The high-level functions documented here return an object of mvp, the low-level functions docu-
mented at lowlevel.Rd return lists. But don’t use the low-level functions.

Note

Function mvp_modulo() is distinctly sub-optimal and inst/mvp_modulo.Rmd details ideas for bet-
ter implementation.

Author(s)

Robin K. S. Hankin

See Also

lowlevel

Examples

(p1 <- rmvp(3))
(p2 <- rmvp(3))

p1*p2

p1+p2

20 print

p1^3

p1*(p1+p2) == p1^2+p1*p2 # should be TRUE

print Print methods for mvp objects

Description

Print methods for mvp objects: to print, an mvp object is coerced to mpoly form and the mpoly print
method used.

Usage

S3 method for class 'mvp'
print(x, ...)

Arguments

x Object of class mvp, coerced to mpoly form

... Further arguments

Value

Returns its argument invisibly

Author(s)

Robin K. S. Hankin

Examples

a <- rmvp(4)
a
print(a)
print(a,stars=TRUE)
print(a,varorder=rev(letters))

rmvp 21

rmvp Random multivariate polynomials

Description

Random multivariate polynomials, intended as quick “get you going” examples of mvp objects

Usage

rmvp(n=7, size = 6, pow = 6, symbols = 6)

Arguments

n Number of terms to generate

size Maximum number of symbols in each term

pow Maximum power of each symbol

symbols Symbols to use; if numeric, interpret as the first symbols letters of the alphabet

Details

What you see is what you get, basically. Note that a term such as a^2*b*a^3 will be simplified to
a^5*b, so powers in the result may be larger than argument pow.

Value

Returns a multivariate polynomial, an object of class mvp

Author(s)

Robin K. S. Hankin

Examples

rmvp()
rmvp(5,symbols=state.abb)

22 series

series Decomposition of multivariate polynomials by powers

Description

Power series of multivariate polynomials, in various forms

Usage

trunc(S,n)
truncall(S,n)
trunc1(S,...)
series(S,v,showsymb=TRUE)
S3 method for class 'series'
print(x,...)
onevarpow(S,...)
taylor(S,vx,va,debug=FALSE)
mvp_taylor_onevar(allnames,allpowers,coefficients, v, n)
mvp_taylor_allvars(allnames,allpowers,coefficients, n)
mvp_taylor_onepower_onevar(allnames, allpowers, coefficients, v, n)
mvp_to_series(allnames, allpowers, coefficients, v)

Arguments

S Object of class mvp

n Non-negative integer specifying highest order to be retained

v Variable to take Taylor series with respect to. If missing, total power of each
term is used (except for series() where it is mandatory)

x,... Object of class series and further arguments, passed to the print method; in
trunc1() a list of variables to truncate

showsymb In function series(), Boolean, with default TRUE meaning to substitute vari-
ables like x_m_foo with (x-foo) for readability reasons; see the vignette for a
discussion

vx,va,debug In function taylor(), names of variables to take series with respect to; and a
Boolean with default FALSE meaning to return the mvp and TRUE meaning to
return the string that is passed to eval()

allnames,allpowers,coefficients

Components of mvp objects

Details

Function onevarpow() returns just the terms in which the symbols corresponding to the named
arguments have powers equal to the arguments’ powers. Thus:

series 23

onevarpow(as.mvp("x*y*z + 3*x*y^2 + 7*x*y^2*z^6 + x*y^3"),x=1,y=2)
mvp object algebraically equal to
3 + 7 z^6

Above, we see that only the terms with x^1*y^2 have been extracted, corresponding to arguments
x=1,y=2.

Function series() returns a power series expansion of powers of variable v. The value returned
is a list of three elements named mvp, varpower, and variablename. The first element is a list of
mvp objects and the second is an integer vector of powers of variable v (element variablename is a
character string holding the variable name, argument v).

Function trunc(S,n) returns the terms of S with the sum of the powers of the variables ≤ n.
Alternatively, it discards all terms with total power > n.

Function trunc1() is similar to trunc(). It takes a mvp object and an arbitrary number of named
arguments, with names corresponding to variables and their values corresponding to the highest
power in that variable to be retained. Thus trunc1(S,x=2,y=4) will discard any term with variable
x raised to the power 3 or above, and also any term with variable y raised to the power 5 or above.
The highest power of x will be 2 and the highest power of y will be 4.

Function truncall(S,n) discards any term of S with any variable raised to a power greater than n.

Function series() returns an object of class series; the print method for series objects is sen-
sitive to the value of getOption("mvp_mult_symbol"); set this to "*" to get mpoly-compatible
output.

Function taylor() is a convenience wrapper for series().

Functions mvp_taylor_onevar(), mvp_taylor_allvars() and mvp_to_series() are low-level
helper functions that are not intended for the user.

Author(s)

Robin K. S. Hankin

See Also

deriv

Examples

trunc(as.mvp("1+x")^6,2)

trunc(as.mvp("1+x+y")^3,2) # discards all terms with total power>2
trunc1(as.mvp("1+x+y")^3,x=2) # terms like y^3 are treated as constants

trunc(as.mvp("1+x+y^2")^3,3) # discards x^2y^2 term (total power=4>3)
truncall(as.mvp("1+x+y^2")^3,3) # retains x^2y^2 term (all vars to power 2)

onevarpow(as.mvp("1+x+x*y^2 + z*y^2*x"),x=1,y=2)

(p2 <- rmvp(10))
series(p2,"a")

24 special

Works well with pipes:

f <- function(n){as.mvp(sub('n',n,'1+x^n*y'))}
Reduce(`*`,lapply(1:6,f)) %>% series('y')
Reduce(`*`,lapply(1:6,f)) %>% series('x')

(p <- horner("x+y",1:4))
onevarpow(p,x=2) # coefficient of x^2
onevarpow(p,x=3) # coefficient of x^3

p %>% trunc(2)
p %>% trunc1(x=2)
(p %>% subs(x="x+dx") -p) %>% trunc1(dx=2)

Nice example of Horner's method:
(p <- as.mvp("x + y + 3*x*y"))
trunc(horner(p,1:5)*(1-p)^2,4) # should be 1

Third order taylor expansion of f(x)=sin(x+y) for x=1.1, about x=1:
(sinxpy <- horner("x+y",c(0,1,0,-1/6,0,+1/120,0,-1/5040,0,1/362880))) # sin(x+y)
dx <- as.mvp("dx")
t3 <- sinxpy + aderiv(sinxpy,x=1)*dx + aderiv(sinxpy,x=2)*dx^2/2 + aderiv(sinxpy,x=3)*dx^3/6
t3 %<>% subs(x=1,dx=0.1) # t3 = Taylor expansion of sin(y+1.1)
t3 %>% subs(y=0.3) - sin(1.4) # numeric; should be small

special Various functions to create simple multivariate polynomials

Description

Various functions to create simple mvp objects such as single-term, homogeneous, and constant
multivariate polynomials.

Usage

product(v,symbols=letters)
homog(d,power=1,symbols=letters)
linear(x,power=1,symbols=letters)
xyz(n,symbols=letters)
numeric_to_mvp(x)

Arguments

d,n An integer; generally, the dimension or arity of the resulting mvp object
v,power Integer vector of powers
x Numeric vector of coefficients
symbols Character vector for the symbols

subs 25

Value

All functions documented here return a mvp object

Note

The functions here are related to their equivalents in the multipol and spray packages, but are not
exactly the same.

Function constant() is documented at constant.Rd, but is listed below for convenience.

Author(s)

Robin K. S. Hankin

See Also

constant, zero

Examples

product(1:3) # a * b^2 * c^3
homog(3) # a + b + c
homog(3,2) # a^2 + a b + a c + b^2 + b c + c^2
linear(1:3) # 1*a + 2*b + 3*c
constant(5) # 5
xyz(5) # a*b*c*d*e

subs Substitution

Description

Substitute symbols in an mvp object for numbers or other multivariate polynomials

Usage

subs(S, ..., lose = TRUE)
subsy(S, ..., lose = TRUE)
subvec(S, ...)
subsmvp(S,v,X)
varchange(S,...)
varchange_formal(S,old,new)
namechanger(x,old,new)

26 subs

Arguments

S,X Multivariate polynomials

... named arguments corresponding to variables to substitute

lose Boolean with default TRUE meaning to return a scalar (the constant) in place of
a constant mvp object

v A string corresponding to the variable to substitute

old,new,x The old and new variable names respectively; x is a character vector

Details

Function subs() substitutes variables for mvp objects, using a natural R idiom. Observe that this
type of substitution is sensitive to order:

> p <- as.mvp("a b^2")
> subs(p,a="b",b="x")
mvp object algebraically equal to
x^3
> subs(p,b="x",a="b") # same arguments, different order
mvp object algebraically equal to
b x^2

Functions subsy() and subsmvp() are lower-level functions, not really intended for the end-user.
Function subsy() substitutes variables for numeric values (order matters if a variable is substituted
more than once). Function subsmpv() takes a mvp object and substitutes another mvp object for a
specific symbol.

Function subvec() substitutes the symbols of S with numerical values. It is vectorised in its ellipsis
arguments with recycling rules and names behaviour inherited from cbind(). However, if the first
element of ... is a matrix, then this is interpreted by rows, with symbol names given by the matrix
column names; further arguments are ignored. Unlike subs(), this function is generally only useful
if all symbols are given a value; unassigned symbols take a value of zero.

Function varchange() makes a formal variable substitution. It is useful because it can take non-
standard variable names such as “(a-b)” or “?”, and is used in taylor(). Function varchange_formal()
does the same task, but takes two character vectors, old and new, which might be more convenient
than passing named arguments. Remember that non-standard names might need to be quoted; also
you might need to escape some characters, see the examples. Function namechanger() is a low-
level helper function that uses regular expression idiom to substitute variable names.

Value

Functions subs(), subsy() and subsmvp() return a multivariate polynomial unless lose is TRUE
in which case a length one numeric vector is returned. Function subvec() returns a numeric vector
(sic! the output inherits its order from the arguments).

Author(s)

Robin K. S. Hankin

summary 27

See Also

lose

Examples

p <- rmvp(6,2,2,letters[1:3])
p
subs(p,a=1)
subs(p,a=1,b=2)

subs(p,a="1+b x^3",b="1-y")
subs(p,a=1,b=2,c=3,lose=FALSE)

do.call(subs,c(list(as.mvp("z")),rep(c(z="C+z^2"),5)))

subvec(p,a=1,b=2,c=1:5) # supply a named list of vectors

M <- matrix(sample(1:3,26*3,replace=TRUE),ncol=26)
colnames(M) <- letters
rownames(M) <- c("Huey", "Dewie", "Louie")
subvec(kahle(r=3,p=1:3),M) # supply a matrix

varchange(as.mvp("1+x+xy + x*y"),x="newx") # variable xy unchanged

kahle(5,3,1:3) %>% subs(a="a + delta")

varchange(p,a="]") # nonstandard variable names OK

varchange_formal(p,"\\]","a")

summary Summary methods for mvp objects

Description

Summary methods for mvp objects and extraction of typical terms

Usage

S3 method for class 'mvp'
summary(object, ...)
S3 method for class 'summary.mvp'
print(x, ...)
rtypical(object,n=3)

28 zero

Arguments

x,object Multivariate polynomial, class mvp

n In rtypical(), number of terms (in addition to the constant) to select

... Further arguments, currently ignored

Details

The summary method prints out a list of interesting facts about an mvp object such as the longest
term or highest power. Function rtypical() extracts the constant if present, and a random selection
of terms of its argument.

Author(s)

Robin K. S. Hankin

Examples

summary(rmvp(40))
rtypical(rmvp(1000))

zero The zero polynomial

Description

Test for a multivariate polynomial being zero

Usage

is.zero(x)

Arguments

x Object of class mvp

Details

Function is.zero() returns TRUE if x is indeed the zero polynomial. It is defined as length(vars(x))==0
for reasons of efficiency, but conceptually it returns x==constant(0).

(Use constant(0) to create the zero polynomial).

zero 29

Note

I would have expected the zero polynomial to be problematic (cf the freegroup and permutations
packages, where similar issues require extensive special case treatment). But it seems to work fine,
which is a testament to the robust coding in the STL.

A general mvp object is something like

{{"x" -> 3, "y" -> 5} -> 6, {"x" -> 1, "z" -> 8} -> -7}}

which would be 6x3y5 − 7xz8. The zero polynomial is just {}. Neat, eh?

Author(s)

Robin K. S. Hankin

See Also

constant

Examples

constant(0)

t1 <- as.mvp("x+y")
t2 <- as.mvp("x-y")

stopifnot(is.zero(t1*t2-as.mvp("x^2-y^2")))

https://CRAN.R-project.org/package=freegroup
https://CRAN.R-project.org/package=permutations

Index

∗ math
summary, 27

∗ package
mvp-package, 2

∗ symbolmath
allvars, 4
coeffs, 5
deriv, 9
horner, 10
kahle, 12
knight, 13
lowlevel, 15
mpoly, 15
Ops.mvp, 18
print, 20
series, 22
special, 24
subs, 25
zero, 28

%~% (coeffs), 5

accessors (coeffs), 5
aderiv (deriv), 9
aderiv_mvp (deriv), 9
allvars, 4
as.function.mvp, 5
as.mpoly.mvp (mpoly), 15
as.mvp (mvp), 16
as_coeffs (coeffs), 5

coefficients (coeffs), 5
coeffs, 5
coeffs<- (coeffs), 5
consistent (coeffs), 5
constant, 8, 25, 29
constant<- (constant), 8

deriv, 9, 23
deriv_mvp (deriv), 9
drop (lose), 14

hash (coeffs), 5
homog (special), 24
horner, 10, 18

invert, 11
is.coeffs (coeffs), 5
is.constant (constant), 8
is.mvp (mvp), 16
is.zero (zero), 28
is_ok_mvp (mvp), 16

kahle, 12
knight, 13
knight_mvp (knight), 13

linear (special), 24
lose, 14, 27
lowlevel, 15, 19

mpoly, 15
mpoly_to_mvp (mpoly), 15
mvp, 16
mvp-package, 2
mvp_add (lowlevel), 15
mvp_deriv (lowlevel), 15
mvp_eq_mvp (Ops.mvp), 18
mvp_modulo (Ops.mvp), 18
mvp_negative (Ops.mvp), 18
mvp_plus_mvp (Ops.mvp), 18
mvp_plus_numeric (Ops.mvp), 18
mvp_plus_scalar (Ops.mvp), 18
mvp_power (lowlevel), 15
mvp_power_scalar (Ops.mvp), 18
mvp_prod (lowlevel), 15
mvp_subs_mvp (subs), 25
mvp_substitute (lowlevel), 15
mvp_substitute_mvp (lowlevel), 15
mvp_taylor_allvars (series), 22
mvp_taylor_onepower_onevar (series), 22
mvp_taylor_onevar (series), 22

30

INDEX 31

mvp_times_mvp (Ops.mvp), 18
mvp_times_scalar (Ops.mvp), 18
mvp_to_mpoly (mpoly), 15
mvp_to_series (series), 22
mvp_vectorised_substitute (lowlevel), 15
mvp_vectorized_substitute (lowlevel), 15

namechanger (subs), 25
nterms (summary), 27
numeric_to_mvp (special), 24

onevarpow (series), 22
ooom, 11, 18
Ops (Ops.mvp), 18
Ops.coeffs (coeffs), 5
Ops.mvp, 18
Ops.mvp_coeffs (coeffs), 5

powers (coeffs), 5
print, 20
print.coeffs (coeffs), 5
print.mvp_coeffs (coeffs), 5
print.series (series), 22
print.summary.mvp (summary), 27
print_mvp (print), 20
product (special), 24

rmvp, 21
rtypical (summary), 27

series, 22
simplify (lowlevel), 15
special, 12, 24
subs, 11, 14, 25
subs_mvp (subs), 25
subsmvp (subs), 25
substitute (subs), 25
subsy (subs), 25
subvec (subs), 25
summary, 27

taylor, 9
taylor (series), 22
trunc (series), 22
trunc1 (series), 22
truncall (series), 22

varchange (subs), 25
varchange_formal (subs), 25
vars (coeffs), 5

xyz (special), 24

zero, 25, 28

	mvp-package
	allvars
	as.function.mvp
	coeffs
	constant
	deriv
	horner
	invert
	kahle
	knight
	lose
	lowlevel
	mpoly
	mvp
	ooom
	Ops.mvp
	print
	rmvp
	series
	special
	subs
	summary
	zero
	Index

