Package ‘nflseedR’

January 5, 2023
Title Functions to Efficiently Simulate and Evaluate NFL Seasons
Version 1.2.0

Description A set of functions to simulate National Football League
seasons including the sophisticated tie-breaking procedures.

License MIT + file LICENSE
URL https://nflseedr.com, https://github.com/nflverse/nflseedR

BugReports https://github.com/nflverse/nflseedR/issues
Depends R (>=3.5.0)

Imports cli, data.table, dplyr, furrr, future, gsubfn, magrittr,
nflreadr (>= 1.1.3), progressr, purrr, rlang, tibble, tidyr

Suggests gt, knitr, rmarkdown, scales, testthat (>= 3.0.0)
Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

NeedsCompilation no

Author Lee Sharpe [aut, cph],
Sebastian Carl [cre, aut]

Maintainer Sebastian Carl <mrcaseb@gmail.com>
Repository CRAN
Date/Publication 2023-01-05 21:50:31 UTC

R topics documented:

compute_conference_seeds Lo
compute_division_ranks
compute_draft_order
diVISIONS e e e e e e e e e
fmt_pct_special

https://nflseedr.com
https://github.com/nflverse/nflseedR
https://github.com/nflverse/nflseedR/issues

2 compute_conference_seeds

load_schedules e 8
simulate nfl 11
summary.nflseedR_simulation o 14
Index 15

compute_conference_seeds
Compute NFL Playoff Seedings using Game Results and Divisional
Rankings

Description

Compute NFL Playoff Seedings using Game Results and Divisional Rankings

Usage

compute_conference_seeds(
teams,
h2h = NULL,
tiebreaker_depth = 3,
.debug = FALSE,
playoff_seeds = 7

)

Arguments
teams The division standings data frame as computed by compute_division_ranks
h2h A data frame that is used for head-to-head tiebreakers across the tie-breaking

functions. It is computed by the function compute_division_ranks.

tiebreaker_depth
A single value equal to 1, 2, or 3. The default is 3. The value controls the
depth of tiebreakers that shall be applied. The deepest currently implemented
tiebreaker is strength of schedule. The following values are valid:

tiebreaker_depth =1 Break all ties with a coinflip. Fastest variant.

tiebreaker_depth = 2 Apply head-to-head and division win percentage tiebreak-
ers. Random if still tied.

tiebreaker_depth = 3 Apply all tiebreakers through strength of schedule. Ran-
dom if still tied.

.debug Either TRUE or FALSE. Controls whether additional messages are printed to the
console showing what the tie-breaking algorithms are currently performing.

playoff_seeds Number of playoff teams per conference (increased in 2020 from 6 to 7).

compute_division_ranks 3

Value

A data frame of division standings including playoff seeds and the week in which the season ended
for the respective team (exit).

A list of two data frames:

standings Division standings including playoff seeds.

h2h A data frame that is used for head-to-head tiebreakers across the tie-breaking functions.

See Also

The examples on the package website

Examples

Change some options for better output
old <- options(list(digits = 3, tibble.print_min = 64))
library(dplyr, warn.conflicts = FALSE)

try({#to avoid CRAN test problems
nflseedR: :load_sharpe_games() %>%
dplyr::filter(season %in% 2019:2020) %>%
dplyr::select(sim = season, game_type, week, away_team, home_team, result) %>%
nflseedR: :compute_division_ranks() %>%
nflseedR::compute_conference_seeds(h2h = .$h2h) %>%
purrr::pluck(”standings")
»

Restore old options
options(old)

compute_division_ranks
Compute NFL Division Rankings using Game Results

Description

Compute NFL Division Rankings using Game Results

Usage
compute_division_ranks(
games,
teams = NULL,

tiebreaker_depth = 3,
.debug = FALSE,
h2h = NULL

https://nflseedr.com/articles/articles/nflseedR.html

4 compute_division_ranks

Arguments

games A data frame containing real or simulated game scores. The following variables
are required:
sim A simulation ID. Normally 1 - n simulated seasons.
game_type One of 'REG’, "WC’,’DIV’, "CON’, ’SB’ indicating if a game was
a regular season game or one of the playoff rounds.
week The week of the corresponding NFL season.

away_team Team abbreviation of the away team (please see divisions for
valid team abbreviations).

home_team Team abbreviation of the home team (please see divisions for
valid team abbreviations).

result Equals home score - away score.

teams This parameter is optional. If it is NULL the function will compute it internally,
otherwise it has to be a data frame of all teams contained in the games data frame
repeated for each simulation ID (sim). The following variables are required:
sim A simulation ID. Normally 1 - n simulated seasons.

team Team abbreviation of the team (please see divisions for valid team ab-
breviations).

conf Conference abbreviation of the team (please see divisions for valid team
abbreviations).

division Division of the team (please see divisions for valid division names).
tiebreaker_depth

A single value equal to 1, 2, or 3. The default is 3. The value controls the

depth of tiebreakers that shall be applied. The deepest currently implemented

tiebreaker is strength of schedule. The following values are valid:

tiebreaker_depth = 1 Break all ties with a coinflip. Fastest variant.

tiebreaker_depth = 2 Apply head-to-head and division win percentage tiebreak-
ers. Random if still tied.

tiebreaker_depth = 3 Apply all tiebreakers through strength of schedule. Ran-
dom if still tied.

.debug Either TRUE or FALSE. Controls whether additional messages are printed to the
console showing what the tie-breaking algorithms are currently performing.

h2h A data frame that is used for head-to-head tiebreakers across the tie-breaking
functions. It is computed by the function compute_division_ranks.

Value
A list of two data frames:

standings Division standings.

h2h A data frame that is used for head-to-head tiebreakers across the tie-breaking functions.

See Also

The examples on the package website

https://nflseedr.com/articles/articles/nflseedR.html

compute_draft_order 5

Examples

Change some options for better output
old <- options(list(digits = 3, tibble.print_min = 64))
library(dplyr, warn.conflicts = FALSE)

try({#to avoid CRAN test problems
nflseedR: :load_sharpe_games() %>%
dplyr::filter(season %in% 2019:2020) %>%
dplyr::select(sim = season, game_type, week, away_team, home_team, result) %>%
nflseedR: :compute_division_ranks() %>%
purrr::pluck(”standings")

b

Restore old options
options(old)

compute_draft_order Compute NFL Draft Order using Game Results and Divisional Rank-
ings

Description

Compute NFL Draft Order using Game Results and Divisional Rankings

Usage

compute_draft_order(
teams,
games,
h2h = NULL,
tiebreaker_depth = 3,
.debug = FALSE

)

Arguments
teams The division standings data frame including playoff seeds as computed by compute_conference_seeds
games A data frame containing real or simulated game scores. The following variables

are required:

sim A simulation ID. Normally 1 - n simulated seasons.

game_type One of 'REG’,”WC’, ’DIV’, ’CON’, ’SB’ indicating if a game was
aregular season game or one of the playoff rounds.

week The week of the corresponding NFL season.

away_team Team abbreviation of the away team (please see divisions for
valid team abbreviations).

6 compute_draft_order

home_team Team abbreviation of the home team (please see divisions for
valid team abbreviations).

result Equals home score - away score.

h2h A data frame that is used for head-to-head tiebreakers across the tie-breaking
functions. It is computed by the function compute_division_ranks.
tiebreaker_depth
A single value equal to 1, 2, or 3. The default is 3. The value controls the
depth of tiebreakers that shall be applied. The deepest currently implemented
tiebreaker is strength of schedule. The following values are valid:

tiebreaker_depth = 1 Break all ties with a coinflip. Fastest variant.

tiebreaker_depth = 2 Apply head-to-head and division win percentage tiebreak-
ers. Random if still tied.

tiebreaker_depth = 3 Apply all tiebreakers through strength of schedule. Ran-
dom if still tied.

.debug Either TRUE or FALSE. Controls whether additional messages are printed to the
console showing what the tie-breaking algorithms are currently performing.

Value

A data frame of standings including the final draft pick number and the variable exit which indi-
cates the week number of the teams final game (Super Bowl Winner is one week higher).

See Also

The examples on the package website

Examples

Change some options for better output
old <- options(list(digits = 3, tibble.print_min = 64))
library(dplyr, warn.conflicts = FALSE)

try({#to avoid CRAN test problems
games <-
nflseedR: :load_sharpe_games() %>%
dplyr::filter(season %in% 2018:2019) %>%
dplyr::select(sim = season, game_type, week, away_team, home_team, result)

games %>%
nflseedR: :compute_division_ranks() %>%
nflseedR: :compute_conference_seeds(h2h = .$h2h, playoff_seeds = 6) %>%
nflseedR: :compute_draft_order(games = games, h2h = .$h2h)

»

Restore old options
options(old)

https://nflseedr.com/articles/articles/nflseedR.html

divisions 7

divisions NFL team names and the conferences and divisions they belong to

Description

NFL team names and the conferences and divisions they belong to

Usage

divisions

Format

A data frame with 36 rows and 4 variables containing NFL team level information, including fran-
chises in multiple cities:

team Team abbreviation
conf Conference abbreviation
division Division name

sdiv Division abbreviation

This data frame is created using the teams_colors_logos data frame of the nflfastR package.
Please see data-raw/divisions.R for the code to create this data.

Examples

divisions

fmt_pct_special Format Numerical Values to Special Percentage Strings

Description

This function formats numeric vectors with values between O and 1 into percentage strings with
special specifications. Those specifications are:
* Oand I are converted to "0%" and "100%" respectively (takes machine precision into account)
* all other values < 0.01 are converted to "<1%"
* all other values between 0.01 and 0.995 are rounded to percentages without decimals
* values between 0.995 and 0.999 are rounded to percentages with 1 decimal

* values between 0.999 and 1 are converted to ">99.9%" unless closer to 1 than machine preci-
sion.

8 load_schedules

Usage

fmt_pct_special(x)

Arguments

X A vector of numerical values

Value

A character vector

Examples

X <- c(0, 0.004, 0.009, 0.011, 0.9, 0.98, ©.994,
.995, .9989, .999, .9991, .99999999)

fmt <- fmt_pct_special(x)

data.frame(x = x, fmt = fmt)

load_schedules Load Lee Sharpe’s Games File

Description

Lee Sharpe maintains an important data set that contains broadly used information on games in the
National Football League. This function is a convenient helper to download the file into memory
without having to remember the correct url.

Usage
load_schedules(...)

load_sharpe_games(...)

Arguments
Arguments passed on to nflreadr: :load_schedules
seasons anumeric vector of seasons to return, default TRUE returns all available
data.
Value

A data frame containing the following variables for all NFL games since 1999:
game_id The ID of the game as assigned by the nflverse. Note that this value matches the game_id
field in nfifastR if you wish to join the data.

season The year of the NFL season. This represents the whole season, so regular season games
that happen in January as well as playoff games will occur in the year after this number.

load_schedules 9

game_type What type of game? One of the following values:

* REG: a regular season game

* WC: a wildcard playoff game

e DIV: adivisional round playoff game
* CON: a conference championship

* SB: a Super Bowl

week The week of the NFL season the game occurs in. Please note that the game_type will differ
for weeks >= 18 because of the season expansion in 2021. Please use game_type to filter for
regular season or postseason.

gameday The date on which the game occurred.
weekday The day of the week on which the game occurred.

gametime The kickoff time of the game. This is represented in 24-hour time and the Eastern time
zone, regardless of what time zone the game was being played in.

away_team The away team.

away_score The number of points the away team scored. Is NA for games which haven’t yet been
played.

home_team The home team. Note that this contains the designated home team for games which
no team is playing at home such as Super Bowls or NFL International games.

home_score The number of points the home team scored. Is NA for games which haven’t yet been
played.

location Either Home if the home team is playing in their home stadium, or Neutral if the game is
being played at a neutral location. This still shows as Home for games between the Giants and
Jets even though they share the same home stadium.

result Equals home_score - away_score. The number of points the home team scored minus the
number of points the away team scored. Is NA for games which haven’t yet been played.
Convenient for evaluating against the spread bets.

total The sum of each team’s score in the game. Equals home_score + away_score. Is NA for
games which haven’t yet been played. Convenient for evaluating over/under total bets.

overtime Whether the game went into overtime (= 1) or not (= 0).
old_game_id The id of the game issued by the NFL Game Statistics & Information System.

away_rest The number of days since that away team’s previous game (7 is used for the team’s first
game of the season).

home_rest The number of days since that home team’s previous game (7 is used for the team’s first
game of the season).

away_moneyline Odd of the away_team winning the game.
home_moneyline Odd of the home_team winning the game.

spread_line The spread line for the game. A positive number means the home team was favored by
that many points, a negative number means the away team was favored by that many points.
This lines up with the result column.

away_spread_odds Odd of the away_team covering the spread_line.

home_spread_odds Odd of the home_team covering the spread_line.

10 load_schedules

total_line The total line for the game.

under_odds Odd of the total being under the total_line.

over_odds Odd of the total being over the total_line.

div_game Whether the game was a divisional game (= 1) or not (= 0).

roof What was the status of the stadium’s roof? Will be one of the following values:

* closed: Stadium has a retractable roof which was closed
¢ dome: An indoor stadium

* open: Stadium has a retractable roof which was open

¢ outdoors: An outdoor stadium

surface What type of ground the game was played on.
temp The temperature at the stadium (for roof types outdoors and open only).
wind The speed of the wind in miles/hour (for roof types outdoors and open only).

away_qb_id GSIS ID of the "starting quarterback” of the away team identified as the first quarter-
back (per roster data) listed as passer (in nflfastR play by play data) in 2+ plays that game.
In the final regular season game it is the QB with the most plays as the passer.

home_qgb_id GSIS ID of the "starting quarterback” of the home team identified as the first quarter-
back (per roster data) listed as passer (in nflfastR play by play data) in 2+ plays that game.
In the final regular season game it is the QB with the most plays as the passer.

away_qb_name Full name of the "starting quarterback” of the away team identified as the first
quarterback (per roster data) listed as passer (in nflfastR play by play data) in 2+ plays that
game. In the final regular season game it is the QB with the most plays as the passer.

home_qgb_name Full name of the "starting quarterback” of the home team identified as the first
quarterback (per roster data) listed as passer (in nflfastR play by play data) in 2+ plays that
game. In the final regular season game it is the QB with the most plays as the passer.

away_coach Name of the head coach of the away team.
home_coach Name of the head coach of the home team.
referee Name of the game’s referee (head official).
stadium_id Pro Football Reference ID of the stadium.

stadium Name of the stadium.

See Also

The internally called function nflreadr: :load_schedules()

Examples

try({#to avoid CRAN test problems
games <- load_sharpe_games()
dplyr::glimpse(games)

»

https://www.pro-football-reference.com/

simulate_nfl 11

simulate_nfl Simulate an NFL Season

Description

This function simulates a given NFL season multiple times using custom functions to estimate and
simulate game results and computes the outcome of the given season including playoffs and draft
order. It is possible to run the function in parallel processes by calling the appropriate plan. Progress
updates can be activated by calling handlers before the start of the simulations. Please see the below
given section "Details" for further information.

Usage

simulate_nfl(
nfl_season = NULL,
process_games = NULL,

playoff_seeds = ifelse(nfl_season >= 2020, 7, 6),
if_ended_today = FALSE,

fresh_season = FALSE,

fresh_playoffs = FALSE,

tiebreaker_depth = 3,

test_week = NULL,

simulations = 1000,

sims_per_round = max(ceiling(simulations/future::availableCores() * 2), 100),
.debug = FALSE,

print_summary = FALSE,

sim_include = c("DRAFT", "REG", "POST")

Arguments

nfl_season Season to simulate

process_games A function to estimate and simulate the results of games. Uses team, schedule,
and week number as arguments.

Additional parameters passed on to the function process_games.
playoff_seeds Number of playoff teams per conference (increased in 2020 from 6 to 7).

if_ended_today Either TRUE or FALSE. If TRUE, ignore remaining regular season games and cut
to playoffs based on current regular season data.

fresh_season Either TRUE or FALSE. Whether to blank out all game results and simulate the
the season from scratch (TRUE) or take game results so far as a given and only
simulate the rest (FALSE).

fresh_playoffs Either TRUE or FALSE. Whether to blank out all playoff game results and simulate
the postseason from scratch (TRUE) or take game results so far as a given and
only simulate the rest (FALSE).

12 simulate_nfl

tiebreaker_depth
A single value equal to 1, 2, or 3. The default is 3. The value controls the
depth of tiebreakers that shall be applied. The deepest currently implemented
tiebreaker is strength of schedule. The following values are valid:
tiebreaker_depth =1 Break all ties with a coinflip. Fastest variant.
tiebreaker_depth = 2 Apply head-to-head and division win percentage tiebreak-
ers. Random if still tied.
tiebreaker_depth = 3 Apply all tiebreakers through strength of schedule. Ran-
dom if still tied.
test_week Aborts after the simulator reaches this week and returns the results from your
process games call.

simulations Equals the number of times the given NFL season shall be simulated

sims_per_round The number of simulations can be split into multiple rounds and be processed
parallel. This parameter controls the number of simulations per round. The
default value determines the number of locally available cores and calculates
the number of simulations per round to be equal to half of the available cores
(various benchmarks showed this results in optimal performance).

.debug Either TRUE or FALSE. Controls whether additional messages are printed to the
console showing what the tie-breaking algorithms are currently performing.

print_summary If TRUE, prints the summary statistics to the console.

sim_include One of "REG”, "POST", "DRAFT" (the default). Simulation will behave as fol-
lows:

REG Simulate the regular season and compute standings, division ranks, and
playoff seeds

POST Do REG + simulate the postseason

DRAFT Do POST + compute draft order

Details

More Speed Using Parallel Processing:

We recommend choosing a default parallel processing method and saving it as an environment
variable in the R user profile to make sure all futures will be resolved with the chosen method by
default. This can be done by following the below given steps.

First, run the following line and the user profile should be opened automatically. If you haven’t
saved any environment variables yet, this will be an empty file.

usethis::edit_r_environ()

In the opened file add the next line, then save the file and restart your R session. Please note that
this example sets "multisession” as default. For most users this should be the appropriate plan but
please make sure it truly is.

R_FUTURE_PLAN="multisession"

After the session is freshly restarted please check if the above method worked by running the next
line. If the output is FALSE you successfully set up a default non-sequential future: :plan(). If
the output is TRUE all functions will behave like they were called with purrr: :map() and NOT in
multisession.

simulate_nfl 13

inherits(future::plan(), "sequential")

For more information on possible plans please see the future package Readme.

Get Progress Updates while Functions are Running:

Most nflfastR functions are able to show progress updates using progressr: :progressor() if
they are turned on before the function is called. There are at least two basic ways to do this by
either activating progress updates globally (for the current session) with

progressr::handlers(global = TRUE)
or by piping the function call into progressr: :with_progress():
simulate_nf1(2020, fresh_season = TRUE) %>%

progressr: :with_progress()

For more information how to work with progress handlers please see progressr::progressr.

Value

An nflseedR_simulation object containing a list of 6 data frames data frames with the results of
all simulated games, the final standings in each simulated season (incl. playoffs and draft order),
summary statistics across all simulated seasons, and the simulation parameters. For a full list, please
see the package website.

See Also

The examples on the package website

The method summary.nflseedR_simulation() that creates a pretty html summary table.

Examples

library(nflseedR)

Activate progress updates
progressr::handlers(global = TRUE)

Parallel processing can be activated via the following line
future::plan("multisession”)

try({#to avoid CRAN test problems
Simulate the season 4 times in 2 rounds
sim <- nflseedR::simulate_nfl(

nfl_season = 2020,

fresh_season = TRUE,

simulations = 4,

sims_per_round = 2

)

Overview output
dplyr::glimpse(sim)
»

https://github.com/HenrikBengtsson/future/blob/develop/README.md
https://nflseedr.com/articles/articles/nflsim.html#simulation-output
https://nflseedr.com/articles/articles/nflsim.html

14 summary.nflseedR_simulation

summary.nflseedR_simulation
Compute Pretty Simulations Summary Table

Description

Uses the R package gt to create a pretty html table of the nflseedR simulation summary data frame.

Usage
S3 method for class 'nflseedR_simulation'
summary(object, ...)

Arguments
object an object for which a summary is desired.

additional arguments passed on to the methods (currently not used).

Output of below example

Examples

library(nflseedR)

set seed for recreation,

internal parallelization requires a L'Ecuyer-CMRG random number generator
set.seed(19980310, kind = "L'Ecuyer-CMRG")

Simulate the season 20 times in 1 round
sim <- nflseedR::simulate_nfl(

nfl_season = 2021,

fresh_season = TRUE,

simulations = 20

)

Create Summary Tables
tbl <- summary(sim)

The output of tbl is given in the above image.

Index

x datasets
divisions, 7

compute_conference_seeds, 2, 5
compute_division_ranks, 2, 3,4, 6
compute_draft_order, 5

divisions, 4-6, 7

fmt_pct_special, 7
future::plan(), 12

handlers, 1/

load_schedules, 8
load_sharpe_games (load_schedules), 8

nflreadr::load_schedules, 8
nflreadr::load_schedules(), 10

plan, /1

progressr: :progressor(), 13
progressr: :progressr, 13
progressr: :with_progress(), I3
purrr::map(), 12

simulate_nfl, 11
summary.nflseedR_simulation, 14
summary.nflseedR_simulation(), /3

15

	compute_conference_seeds
	compute_division_ranks
	compute_draft_order
	divisions
	fmt_pct_special
	load_schedules
	simulate_nfl
	summary.nflseedR_simulation
	Index

