
Package ‘permutations’
February 22, 2023

Type Package

Title The Symmetric Group: Permutations of a Finite Set

Version 1.1-2

Imports magic,numbers,partitions (>= 1.9-17),freealg (>= 1.0-4),mathjaxr

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

Depends R (>= 3.5.0), methods

LazyData TRUE

Description Manipulates invertible functions from a finite set to
itself. Can transform from word form to cycle form and
back. To cite the package in publications please use
Hankin (2020) ``Introducing the permutations R package'',
SoftwareX, volume 11 <doi:10.1016/j.softx.2020.100453>.

License GPL-2

Suggests rmarkdown,testthat,knitr,magrittr

VignetteBuilder knitr

URL https://github.com/RobinHankin/permutations

BugReports https://github.com/RobinHankin/permutations/issues

RdMacros mathjaxr

R topics documented:
permutations-package . 2
allperms . 4
as.function.permutation . 5
c . 6
capply . 7
cayley . 8
commutator . 9
conjugate . 10
cyclist . 11
derangement . 13
dodecahedron . 14
faro . 14
fbin . 15
fixed . 17

1

https://doi.org/10.1016/j.softx.2020.100453
https://github.com/RobinHankin/permutations
https://github.com/RobinHankin/permutations/issues

2 permutations-package

get1 . 18
id . 18
inverse . 19
length . 21
megaminx . 22
megaminx_plotter . 23
nullperm . 24
Ops.permutation . 25
orbit . 27
permorder . 28
permutation . 29
perm_matrix . 31
print . 32
rperm . 34
sgn . 35
shape . 36
size . 38
tidy . 39
valid . 40

Index 42

permutations-package The Symmetric Group: Permutations of a Finite Set

Description

Manipulates invertible functions from a finite set to itself. Can transform from word form to cycle
form and back. To cite the package in publications please use Hankin (2020) "Introducing the
permutations R package", SoftwareX, volume 11 <doi:10.1016/j.softx.2020.100453>.

Details

The DESCRIPTION file:

Package: permutations
Type: Package
Title: The Symmetric Group: Permutations of a Finite Set
Version: 1.1-2
Imports: magic,numbers,partitions (>= 1.9-17),freealg (>= 1.0-4),mathjaxr
Authors@R: c(person(given=c("Robin", "K. S."), family="Hankin", role = c("aut","cre"), email="hankin.robin@gmail.com", comment = c(ORCID = "0000-0001-5982-0415")), person("Paul", "Egeler", email = "paulegeler@gmail.com", role = c("ctb"), comment = c(ORCID = "0000-0001-6948-9498")))
Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>
Depends: R (>= 3.5.0), methods
LazyData: TRUE
Description: Manipulates invertible functions from a finite set to itself. Can transform from word form to cycle form and back. To cite the package in publications please use Hankin (2020) "Introducing the permutations R package", SoftwareX, volume 11 <doi:10.1016/j.softx.2020.100453>.
License: GPL-2
Suggests: rmarkdown,testthat,knitr,magrittr
VignetteBuilder: knitr
URL: https://github.com/RobinHankin/permutations
BugReports: https://github.com/RobinHankin/permutations/issues
RdMacros: mathjaxr
Author: Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>), Paul Egeler [ctb] (<https://orcid.org/0000-0001-6948-9498>)

permutations-package 3

Index of help topics:

Ops.permutation Arithmetic Ops Group Methods for permutations
allperms All permutations of a given size and all cycles

of a given length
as.function.permutation

Coerce a permutation to a function
c Concatenation of permutations
capply Apply functions to elements of a cycle
cayley Cayley tables for permutation groups
commutator Group-theoretic commutator and group action;

the dot object
conjugate Are two permutations conjugate?
cyclist details of cyclists
derangement Tests for a permutation being a derangement
dodecahedron The dodecahedron group
faro Faro shuffles
fbin The fundamental bijection
fixed Fixed elements
get1 Retrieve particular cycles or components of

cycles
id The identity permutation
inverse Inverse of a permutation
length.word Various vector-like utilities for permutation

objects.
megaminx megaminx
megaminx_plotter Plotting routine for megaminx sequences
nullperm Null permutations
orbit Orbits of integers
perm_matrix Permutation matrices
permorder The order of a permutation
permutation Functions to create and coerce word objects and

cycle objects
permutations-package The Symmetric Group: Permutations of a Finite

Set
print.permutation Print methods for permutation objects
rperm Random permutations
sgn Sign of a permutation
shape Shape of a permutation
size Gets or sets the size of a permutation
tidy Utilities to neaten permutation objects
valid Functions to validate permutations

Author(s)

NA

Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>

Examples

a <- rperm(10,5)
b <- rperm(10,5)

4 allperms

a*b

inverse(a)

allperms All permutations of a given size and all cycles of a given length

Description

Function allperms() returns all n factorial permutations of a set. Function allcyc() returns all
(n− 1)! permutations comprising a single cycle of length n.

Usage

allperms(n)
allcyc(n)

Arguments

n The size of the set, integer

Details

Function allperms() is very basic (the idiom is word(t(partitions::perms(n)))) but is here
for completeness.

Note

Function allcyc() is taken directly from Er’s “fine-tuned” algorithm. It should really be imple-
mented in C as part of the partitions package but I have not yet got round to this.

Author(s)

Robin K. S. Hankin

References

M. C. Er 1989 “Efficient enumeration of cyclic permutations in situ”. International Journal of
Computer Mathematics, volume 29:2-4, pp121-129.

See Also

allperms

Examples

allperms(5)

allcyc(5)

as.function.permutation 5

as.function.permutation

Coerce a permutation to a function

Description

Coerce a permutation to an executable function

Usage

S3 method for class 'permutation'
as.function(x, ...)

Arguments

x permutation

... further arguments (currently ignored)

Note

Multiplication of permutations loses associativity when using functional notation; see examples.

Also, note that the coerced function will not take an argument greater than the size (qv) of the
permutation.

Author(s)

Robin K. S. Hankin

Examples

x <- cyc_len(3)
y <- cyc_len(5)

xfun <- as.function(x)
yfun <- as.function(y)

stopifnot(xfun(yfun(2)) == as.function(y*x)(2)) # note transposition of x & y

written in postfix notation one has the very appealing form x(fg) = (xf)g

it's vectorized:
as.function(rperm(10,9))(1)
as.function(as.cycle(1:9))(sample(9))

6 c

c Concatenation of permutations

Description

Concatenate words or cycles together

Usage

S3 method for class 'word'
c(...)
S3 method for class 'cycle'
c(...)
S3 method for class 'permutation'
rep(x, ...)

Arguments

... In the methods for c(), objects to be concatenated. Must all be of the same type:
either all word, or all cycle

x In the method for rep(), a permutation object

Note

The methods for c() do not attempt to detect which type (word or cycle) you want as conversion is
expensive.

Function rep.permutation() behaves like base::rep() and takes the same arguments, eg times
and each.

Author(s)

Robin K. S. Hankin

See Also

size

Examples

x <- as.cycle(1:5)
y <- cycle(list(list(1:4,8:9),list(1:2)))

concatenate cycles:
c(x,y)

concatenate words:
c(rperm(5,3),rperm(6,9)) # size adjusted to maximum size of args

repeat words:
rep(x, times=3)

capply 7

capply Apply functions to elements of a cycle

Description

Function capply() means “cycle apply” and is modelled on lapply(). It applies a function to
every element in the cycles of its argument.

Usage

capply(X, fun, ...)

Arguments

X Permutation, coerced to cycle

fun Function to be applied to each element of X

... Further arguments to fun()

Details

This function is just a convenience wrapper really.

Value

Returns a permutation in cycle form

Author(s)

Robin K. S. Hankin

Examples

(x <- rperm())
capply(x,function(x){x+100})
capply(x,rev)

all(is.id(capply(x,rev)*x)) # should be TRUE

capply(rcyc(20,5,9),order)

capply(rcyc(20,5,9),sample) # still 5-cycles

8 cayley

cayley Cayley tables for permutation groups

Description

Produces a nice Cayley table for a subgroup of the symmetric group on n elements

Usage

cayley(x)

Arguments

x A vector of permutations in cycle form

Details

Cayley’s theorem states that every group G is isomorphic to a subgroup of the symmetric group
acting on G. In this context it means that if we have a vector of permutations that comprise a group,
then we can nicely represent its structure using a table.

If the set x is not closed under multiplication and inversion (that is, if x is not a group) then the
function may misbehave. No argument checking is performed, and in particular there is no check
that the elements of x are unique, or even that they include an identity.

Value

A square matrix giving the group operation

Author(s)

Robin K. S. Hankin

Examples

cyclic group of order 4:
cayley(as.cycle(1:4)^(0:3))

Klein group:
K4 <- as.cycle(c("()","(12)(34)","(13)(24)","(14)(23)"))
names(K4) <- c("00","01","10","11")
cayley(K4)

S3, the symmetric group on 3 elements:
S3 <- as.cycle(c(

"()",
"(12)(35)(46)", "(13)(26)(45)",
"(14)(25)(36)", "(156)(243)", "(165)(234)"

))
names(S3) <- c("()","(ab)","(ac)","(bc)","(abc)","(acb)")
cayley(S3)

commutator 9

Now an example from the onion package, the quaternion group:
Not run:
library(onion)
a <- c(H1,-H1,Hi,-Hi,Hj,-Hj,Hk,-Hk)
X <- word(sapply(1:8,function(k){sapply(1:8,function(l){which((a*a[k])[l]==a)})}))
cayley(X) # a bit verbose; rename the vector:
names(X) <- letters[1:8]
cayley(X) # more compact

End(Not run)

commutator Group-theoretic commutator and group action; the dot object

Description

In the permutations package, the dot is defined as the Group-theoretic commutator: [x, y] =
x−1y−1xy. This is a bit of an exception to the usual definition of xy-yx (along with the freegroup
package). Package idiom is commutator(x,y) or .[x,y].

The Jacobi identity does not make sense in the context of the permutations package, but the Hall-
Witt identity is obeyed.

The “dot” object is defined and discussed in inst/dot.Rmd, which creates file data/dot.rda.

Usage

commutator(x, y)

Arguments

x,y Permutation objects, coerced to word

Author(s)

Robin K. S. Hankin

See Also

group_action

Examples

.[as.cycle("123456789"),as.cycle("12")]

x <- rperm(10,7)
y <- rperm(10,8)
z <- rperm(10,9)

uu <-
commutator(commutator(x,y),z^x) *
commutator(commutator(z,x),y^z) *

10 conjugate

commutator(commutator(y,z),x^y)

stopifnot(all(is.id(uu))) # this is the Hall-Witt identity

.[x,y]

is.id(.[.[x,y],z^x] * .[.[z,x],y^z] * .[.[y,z],x^y])
is.id(.[.[x,-y],z]^y * .[.[y,-z],x]^z * .[.[z,-x],y]^x)

conjugate Are two permutations conjugate?

Description

Returns TRUE if two permutations are conjugate and FALSE otherwise.

Usage

are_conjugate(x, y)
are_conjugate_single(a,b)

Arguments

x,y,a,b Objects of class permutation, coerced to cycle form

Details

Two permutations are conjugate if and only if they have the same shape. Function are_conjugate()
is vectorized and user-friendly; function are_conjugate_single() is lower-level and operates
only on length-one permutations.

The reason that are_conjugate_single() is a separate function and not bundled inside are_conjugate()
is that dealing with the identity permutation is a pain in the arse.

Value

Returns a vector of Booleans

Note

The functionality detects conjugateness by comparing the shapes of two permutations; permutations
are coerced to cycle form because function shape() does.

Author(s)

Robin K. S. Hankin

See Also

group_action,shape

cyclist 11

Examples

as.cycle("(123)(45)") %~% as.cycle("(89)(712)") # same shape
as.cycle("(123)(45)") %~% as.cycle("(89)(7124)") # different shape

are_conjugate(rperm(20,3),rperm(20,3))

rperm(20,3) %~% as.cycle(1:3)

z <- rperm(300,4)
stopifnot(all(are_conjugate(z,id)==is.id(z)))

data(megaminx)
stopifnot(all(are_conjugate(megaminx,megaminx^as.cycle(sample(129)))))

cyclist details of cyclists

Description

Various functionality to deal with cyclists

Usage

vec2cyclist_single(p)
vec2cyclist_single_cpp(p)
remove_length_one(x)
cyclist2word_single(cyc,n)
nicify_cyclist(x,rm1=TRUE, smallest_first=TRUE)

Arguments

p Integer vector, interpreted as a word

x,cyc A cyclist

n In function cycle2word_single(), the size of the permutation to induce
rm1,smallest_first

In function nicify_cyclist(), Boolean, governing whether or not to remove
length-1 cycles, and whether or not to place the smallest element in each cycle
first (non-default values are used by standard_cyclist())

Details

A cyclist is an object corresponding to a permutation P. It is a list with elements that are integer
vectors corresponding to the cycles of P. This object is informally known as a cyclist, but there is
no S3 class corresponding to it. In general use, one should not usually deal with cyclists at all: they
are internal low-level objects not intended for the user.

An object of S3 class cycle is a (possibly named) list of cyclists. NB: there is an unavoidable
notational clash here. When considering a single permutation, “cycle” means group-theoretic cycle
[eg 1 −→ 2 −→ 3 −→ 1]; when considering R objects, “cycle” means “an R object of class cycle
whose elements are permutations written in cycle form”.

12 cyclist

The elements of a cyclist are the disjoint group-theoretic cycles. Note the redundancies inherent:
firstly, because the cycles commute, their order is immaterial (and a list is ordered); and secondly,
the cycles themselves are invariant under cyclic permutation. Heigh ho.

A cyclist may be poorly formed in a number of ways: the cycles may include repeats, or contain ele-
ments which are common to more than one cycle. Such problems are detected by cyclist_valid().
Also, there are less serious problems: the cycles may include length-one cycles; the cycles may start
with an element that is not the smallest. These issues are dealt with by nicify_cyclist().

• Function nicify_cyclist() takes a cyclist and puts it in a nice form but does not alter the
permutation. It takes a cyclist and removes length-one cycles; then orders each cycle so that
the smallest element appears first (that is, it changes (523) to (235)). It then orders the cycles
by the smallest element.

• Function remove_length_one() takes a cyclist and removes length-one cycles from it.

• Function vec2cyclist_single() takes a vector of integers, interpreted as a word, and con-
verts it into a cyclist. Length-one cycles are discarded.

• Function vec2cyclist_single_cpp() is a placeholder for a function that is not yet written.

• Function cyclist2word_single() takes a cyclist and returns a vector corresponding to a
single word. This function is not intended for everyday use; function cycle2word() is much
more user-friendly.

• Function char2cyclist_single() takes a character string like “(342)(19)” and turns it into
a cyclist, in this case list(c(3,4,2),c(1,9)). This function returns a cyclist which is not
necessarily canonicalized: it might have length-one cycles, and the cycles themselves might
start with the wrong number or be incorrectly ordered. It attempts to deal with absence of
commas in a sensible way, so “(18,19)(2,5)” is dealt with appropriately too. The function
is insensitive to spaces. Also, one can give it an argument which does not correspond to a
cycle object, eg char2cyclist_single("(94)(32)(19)(1)") (in which “9” is repeated).
The function does not return an error, but to catch this kind of problem use char2cycle()
which calls the validity checks.
The user should use char2cycle() which executes validity checks and coerces to a cycle
object.

See also the ‘cyclist‘ vignette which contains more details and examples.

Author(s)

Robin K. S. Hankin

See Also

as.cycle,fbin,valid

Examples

vec2cyclist_single(c(7,9,3,5,8,6,1,4,2))

char2cyclist_single("(342)(19)")

nicify_cyclist(list(c(4, 6), c(7), c(2, 5, 1), c(8, 3)))
nicify_cyclist(list(c(4, 6), c(7), c(2, 5, 1), c(8, 3)),rm1=TRUE)

cyclist2word_single(list(c(1,4,3),c(7,8)))

derangement 13

derangement Tests for a permutation being a derangement

Description

A derangement is a permutation which leaves no element fixed.

Usage

is.derangement(x)

Arguments

x Object to be tested

Value

A vector of Booleans corresponding to whether the permutations are derangements or not.

Note

The identity permutation is problematic because it potentially has zero size.

The identity element is not a derangement, although the (zero-size) identity cycle and permutation
both return TRUE under the natural R idiom all(P != seq_len(size(P))).

Author(s)

Robin K. S. Hankin

See Also

id

Examples

allperms(4)
is.derangement(allperms(4))

M <- matrix(c(1,2,3,4, 2,3,4,1, 3,2,4,1),byrow=TRUE,ncol=4)
M
is.derangement(word(M))

is.derangement(rperm(16,4))

14 faro

dodecahedron The dodecahedron group

Description

Permutations comprising the dodecahedron group on either its faces or its edges; also the full do-
decahedron group

Details

The package provides a number of objects for investigating dodecahedral groups:

Object dodecahedron_face is a cycle object with 60 elements corresponding to the permutations of
the faces of a dodecahedron, numbered 1-12 as in the megaminx net. Object dodecahedron_edge
is the corresponding object for permuting the edges of a dodecahedron. The edges are indexed by
the lower of the two adjoining facets on the megaminx net.

Objects full_dodecahedron_face and full_dodecahedron_edge give the 120 elements of the
full dodecahedron group, that is, the dodecahedron group including reflections. NB: these objects
are not isomorphic to S5.

Note

File zzz_dodecahedron.R is not really intended to be human-readable. The source file is in
inst/dodecahedron_group.py and inst/full_dodecahedron_group.py which contain docu-
mented python source code.

Examples

permprod(dodecahedron_face)

faro Faro shuffles

Description

A faro shuffle, faro(),is a permutation of a deck of 2n cards. The cards are split into two packs,
1:n and (n+1):2n, and interleaved: cards are taken alternately from top of each pack and placed
face down on the table. A faro out-shuffle takes the first card from 1:n and a faro in-shuffle takes
the first card from (n+1):(2*n).

A generalized faro shuffle, faro_gen(), splits the pack into m equal parts and applies the same
permutation to each pack, and the same permutation to each set of packs, before interleaving.
The interleaving itself is simply a matrix transpose; it is possible to omit this step by passing
interleave=FALSE.

Usage

faro(n, out = TRUE)
faro_gen(n,m,p1=id,p2=id,interleave=TRUE)

fbin 15

Arguments

n Number of cards in each pack

m Number of packs

p1,p2 Permutations for cards and packs respectively, coerced to word form

interleave Boolean, with default TRUE meaning to actually perform the interleaving and
FALSE meaning not to

out Boolean, with default TRUE meaning to return an out-shuffle and FALSE meaning
to return an in-shuffle

Value

Returns a permutation in word form

Author(s)

Robin K. S. Hankin

Examples

faro(4)
faro(4,FALSE)

faro_gen(9,3)
faro_gen(7,4,cyc_len(7),cyc_len(4))
faro_gen(7,4,cyc_len(7),cyc_len(4),interleave=FALSE)

sapply(seq_len(10),function(n){permorder(faro(n,FALSE))}) # OEIS A002326

plot(as.vector(as.word(faro(10))),type='b')
plot(as.vector(faro_gen(8,5,p1=cyc_len(8)^2,interleave=FALSE)))

fbin The fundamental bijection

Description

Stanley defines the fundamental bijection on page 30.

Given w = (14)(2)(375)(6), Stanley writes it in standard form (specifically: each cycle is written
with its largest element first; cycles are written in increasing order of their largest element). Thus
we obtain (2)(41)(6)(753).

Then we obtain w∗ from w by writing it in standard form an erasing the parentheses (that is, viewing
the numbers as a word); here w∗ = 2416753.

Given this, w may be recovered by inserting a left parenthesis preceding every left-to-right maxi-
mum, and right parentheses where appropriate.

16 fbin

Usage

standard(cyc,n=NULL)
standard_cyclist(x,n=NULL)
fbin_single(vec)
fbin(W)
fbin_inv(cyc)

Arguments

vec In function fbin_single(), an integer vector
W In functions fbin() and fbin_inv(), an object of class permutation, coerced

to word and cycle form respectively
cyc In functions fbin_single() and standard(), permutation object coerced to

cycle form
n In function standard() and standard_cyclist(), size of the partition to as-

sume, with default NULL meaning to use the largest element of any cycle
x In function standard_cyclist(), a cyclist

Details

The user-friendly functions are fbin() and fbin_inv() which perform Stanley’s “fundamental
bijection”. Function fbin() takes a word object and returns a cycle; function fbin_inv() takes a
cycle and returns a word.

The other functions are low-level helper functions that are not really intended for the user (except
possibly standard(), which puts a cycle object in standard order in list form).

Author(s)

Robin K. S. Hankin

References

R. P. Stanley 2011 Enumerative Combinatorics

See Also

nicify_cyclist

Examples

Stanley's example w:
standard(cycle(list(list(c(1,4),c(3,7,5)))))

w_hat <- c(2,4,1,6,7,5,3)

fbin(w_hat)
fbin_inv(fbin(w_hat))

x <- rperm(40,9)
stopifnot(all(fbin(fbin_inv(x))==x))
stopifnot(all(fbin_inv(fbin(x))==x))

fixed 17

fixed Fixed elements

Description

Finds which elements of a permutation object are fixed

Usage

S3 method for class 'word'
fixed(x)
S3 method for class 'cycle'
fixed(x)

Arguments

x Object of class word or cycle

Value

Returns a Boolean vector corresponding to the fixed elements of a permutation.

Note

The function is vectorized; if given a vector of permutations, fixed() returns a Boolean vector
showing which elements are fixed by all of the permutations.

This function has two methods: fixed.word() and fixed.cycle(), neither of which coerce.

Author(s)

Robin K. S. Hankin

See Also

tidy

Examples

fixed(as.cycle(1:3)+as.cycle(8:9)) # elements 4,5,6,7 are fixed
fixed(id)

data(megaminx)
fixed(megaminx)

18 id

get1 Retrieve particular cycles or components of cycles

Description

Given an object of class cycle, function get1() returns a representative of each of the disjoint
cycles in the object’s elements. Function get_cyc() returns the cycle containing a specific element.

Usage

get1(x,drop=TRUE)
get_cyc(x,elt)

Arguments

x permutation object (coerced to cycle class)
drop In function get1(), argument drop controls the behaviour if x is length 1. If

drop is TRUE, then a vector of representative elements is returned; if FALSE, then
a list with one vector element is returned

elt Length-one vector interpreted as a permutation object

Author(s)

Robin K. S. Hankin

Examples

data(megaminx)
get1(megaminx)
get1(megaminx[1])
get1(megaminx[1],drop=TRUE)

get_cyc(megaminx,11)

id The identity permutation

Description

The identity permutation leaves every element fixed

Usage

is.id(x)
is.id_single_cycle(x)
S3 method for class 'cycle'
is.id(x)
S3 method for class 'list'
is.id(x)
S3 method for class 'word'
is.id(x)

inverse 19

Arguments

x Object to be tested

Details

The identity permutation is problematic because it potentially has zero size.

Value

The variable id is a cycle as this is more convenient than a zero-by-one matrix.

Function is.id() returns a Boolean with TRUE if the corresponding element is the identity, and
FALSE otherwise. It dispatches to either is.id.cycle() or is.id.word() as appropriate.

Function is.id.list() tests a cyclist for identityness.

Note

The identity permutations documented here are distinct from the null permutations documented at
nullperm.Rd.

Author(s)

Robin K. S. Hankin

See Also

is.derangement,nullperm

Examples

is.id(id)

as.word(id) # weird

x <- rperm(10,4)
x[3] <- id
is.id(x*inverse(x))

inverse Inverse of a permutation

Description

Calculates the inverse of a permutation in either word or cycle form

Usage

inverse(x)
S3 method for class 'word'
inverse(x)
S3 method for class 'cycle'
inverse(x)
inverse_word_single(W)
inverse_cyclist_single(cyc)

20 inverse

Arguments

x Object of class permutation to be inverted

W In function inverse_word_single(), a vector corresponding to a permutation
in word form (that is, one row of a word object)

cyc In function inverse_cyclist_single(), a cyclist to be inverted

Details

The package provides methods to invert objects of class word (the R idiom is W[W] <- seq_along(W))
and also objects of class cycle (the idiom is lapply(cyc,function(o){c(o[1],rev(o[-1]))})).

The user should use inverse() directly, which dispatches to either inverse.word() or inverse.cycle()
as appropriate.

Sometimes, using idiom such as x^-1 or id/x gives neater code, although these may require coer-
cion between word form and cycle form.

Value

Function inverse() returns an object of the same class as its argument.

Note

Inversion of words is ultimately performed by function inverse_word_single():

inverse_word_single <- function(W){
W[W] <- seq_along(W)
return(W)

}

which can be replaced by order() although this is considerably less efficient, especially for small
sizes of permutations. One of my longer-term plans is to implement this in C, although it is not
clear that this will be any faster.

Author(s)

Robin K. S. Hankin

See Also

cycle_power

Examples

x <- rperm(10,6)
x
inverse(x)

all(is.id(x*inverse(x))) # should be TRUE

inverse(as.cycle(matrix(1:8,9,8)))

length 21

length Various vector-like utilities for permutation objects.

Description

Various vector-like utilities for permutation objects such as length, names(), etc

Usage

S3 method for class 'word'
length(x)
S3 replacement method for class 'permutation'
length(x) <- value
S3 method for class 'word'
names(x)
S3 replacement method for class 'word'
names(x) <- value

Arguments

x permutation object

value In function names<-.word(), the new names

Details

These functions have methods only for word objects; cycle objects use the methods for lists. It is
easy to confuse the length of a permutation with its size.

It is not possible to set the length of a permutation; this is more trouble than it is worth.

Author(s)

Robin K. S. Hankin

See Also

size

Examples

x <- rperm(5,9)
x
names(x) <- letters[1:5]
x

megaminx
length(megaminx) # the megaminx group has 12 generators, one per face.
size(megaminx) # the megaminx group is a subgroup of S_129.

names(megaminx) <- NULL # prints more nicely.
megaminx

22 megaminx

megaminx megaminx

Description

A set of generators for the megaminx group

Details

Each element of megaminx corresponds to a clockwise turn of 72 degrees. See the vignette for more
details.

megaminx[, 1] W White
megaminx[, 2] Pu Purple
megaminx[, 3] DY Dark Yellow
megaminx[, 4] DB Dark Blue
megaminx[, 5] R Red
megaminx[, 6] DG Dark Green
megaminx[, 7] LG Light Green
megaminx[, 8] O Orange
megaminx[, 9] LB Light Blue
megaminx[,10] LY Light Yellow
megaminx[,11] Pi Pink
megaminx[,12] Gy Gray

Vector megaminx_colours shows what colour each facet has at START. Object superflip is a
megaminx operation that flips each of the 30 edges.

These objects can be generated by running script inst/megaminx.R, which includes some further
discussion and technical documentation and creates file megaminx.rda which resides in the data/
directory.

Author(s)

Robin K. S. Hankin

See Also

megaminx_plotter

Examples

data(megaminx)
megaminx
megaminx^5 # should be the identity
inverse(megaminx) # turn each face anticlockwise

megaminx_colours[permprod(megaminx)] # risky but elegant...

W # turn the White face one click clockwise (colour names as per the
table above)

megaminx_plotter 23

megaminx_colours[as.word(W,129)] # it is safer to ensure a size-129 word;
megaminx_colours[as.word(W)] # but the shorter version will work

Now some superflip stuff:

X <- W * Pu^(-1) * W * Pu^2 * DY^(-2)
Y <- LG^(-1) * DB^(-1) * LB * DG
Z <- Gy^(-2) * LB * LG^(-1) * Pi^(-1) * LY^(-1)

sjc3 <- (X^6)^Y * Z^9 # superflip (Jeremy Clark)

p1 <- (DG^2 * W^4 * DB^3 * W^3 * DB^2 * W^2 * DB^2 * R * W * R)^3
m1 <- p1^(Pi^3)

p2 <- (O^2 * LG^4 * DB^3 * LG^3 * DB^2 * LG^2 * DB^2 * DY * LG * DY)^3
m2 <- p2^(DB^2)

p3 <- (LB^2 * LY^4 * Gy * Pi^3 * LY * Gy^4)^3
m3 <- p3^LB

m1,m2 are 32 moves, p3 is 20, total = 84

stopifnot(m1+m2+m3==sjc3)

megaminx_plotter Plotting routine for megaminx sequences

Description

Plots a coloured diagram of a dodecahedron net representing a megaminx

Usage

megaminx_plotter(megperm=id,offset=c(0,0),M=diag(2),setup=TRUE,...)

Arguments

megperm Permutation to be plotted

offset,M Offset and transformation matrix, see details

setup Boolean, with default TRUE meaning to set up the plot with a plot() statement,
and FALSE meaning to plot the points on a pre-existing canvas

... Further arguments passed to polygon()

24 nullperm

Details

Function megaminx_plotter() plots a coloured diagram of a dodecahedron net representing a
megaminx. The argument may be specified as a sequence of turns that are applied to the megaminx
from START .

The function uses rather complicated internal variables pentagons, triangles, and quads whose
meaning and genesis is discussed in heavily-documented file inst/guide.R.

The diagram is centered so that the common vertex of triangles 28 and 82 is at (0, 0).

Author(s)

Robin K. S. Hankin

Examples

data("megaminx")

megaminx_plotter() # START
megaminx_plotter(W) # after turning the White face one click
megaminx_plotter(superflip)

size <- 0.95
o <- 290

Not run:
pdf(file="fig1.pdf")
megaminx_plotter(M=size*diag(2),offset=c(-o,0),setup=TRUE)
megaminx_plotter(W,M=size*diag(2),offset=c(+o,0),setup=FALSE)
dev.off()

pdf(file="fig2.pdf")
p <- permprod(sample(megaminx,100,replace=TRUE))
megaminx_plotter(p,M=size*diag(2),offset=c(-o,0),setup=TRUE)
megaminx_plotter(superflip,M=size*diag(2),offset=c(+o,0),setup=FALSE)
dev.off()

End(Not run)

nullperm Null permutations

Description

Null permutations are the equivalent of NULL

Usage

nullcycle
nullword

Format

Object nullcycle is an empty list coerced to class cycle, specifically cycle(list())

Object nullword is a zero-row matrix, coerced to word, specifically word(matrix(integer(0),0,0))

Ops.permutation 25

Details

These objects are here to deal with the case where a length-zero permutation is extracted. The
behaviour of these null objects is not entirely consistent.

Note

The objects documented here are distinct from the identity permutation, id, documented separately.

See Also

id

Examples

rperm(10,4)[0] # null word

as.cycle(1:5)[0] # null cycle

data(megaminx)
c(NULL,megaminx) # probably not what the user intended...
c(nullcycle,megaminx) # more useful.
c(id,megaminx) # also useful.

Ops.permutation Arithmetic Ops Group Methods for permutations

Description

Allows arithmetic operators to be used for manipulation of permutation objects such as addition,
multiplication, division, integer powers, etc.

Usage

S3 method for class 'permutation'
Ops(e1, e2)
cycle_power(x,pow)
cycle_power_single(x,pow)
cycle_sum(e1,e2)
cycle_sum_single(c1,c2)
group_action(e1,e2)
word_equal(e1,e2)
word_prod(e1,e2)
word_prod_single(e1,e2)
permprod(x)
vps(vec,pow)
ccps(n,pow)
helper(e1,e2)

26 Ops.permutation

Arguments

x,e1,e2 Objects of class “permutation”

c1,c2 Objects of class cycle

pow Integer vector of powers

vec In function vps(), a vector of integers corresponding to a cycle

n In function ccps(), the integer power to which cycle(seq_len(n)) is to be
raised; may be positive or negative.

Details

The function Ops.permutation() passes binary arithmetic operators (“+”, “*”, “/”, “^”, and “==”)
to the appropriate specialist function.

Multiplication, as in a*b, is effectively word_prod(a,b); it coerces its arguments to word form
(because a*b = b[a]).

Raising permutations to integer powers, as in a^n, is cycle_power(a,n); it coerces a to cycle form
and returns a cycle (even if n = 1). Negative and zero values of n operate as expected. Function
cycle_power() is vectorized; it calls cycle_power_single(), which is not. This calls vps()
(“Vector Power Single”), which checks for simple cases such as pow=0 or the identity permutation;
and function vps() calls function ccps() which performs the actual number-theoretic manipulation
to raise a cycle to a power.

Raising a permutation to the power of another permutation, as in a^b, is idiom for inverse(b)*a*b,
sometimes known as group action; the notation is motivated by the identities x^(yz)=(x^y)^z and
(xy)^z=x^z*y^z.

Permutation addition, as in a+b, is defined if the cycle representations of the addends are disjoint.
The sum is defined as the permutation given by juxtaposing the cycles of a with those of b. Note
that this operation is commutative. If a and b do not have disjoint cycle representations, an error is
returned. This is useful if you want to guarantee that two permutations commute (NB: permutation
a commutes with a^i for i any integer, and in particular a commutes with itself. But a+a returns
an error: the operation checks for disjointness, not commutativity).

Permutation “division”, as in a/b, is a*inverse(b). Note that a/b*c is evaluated left to right so is
equivalent to a*inverse(b)*c. See note.

Function helper() sorts out recycling for binary functions, the behaviour of which is inherited
from cbind(), which also handles the names of the returned permutation.

Value

None of these functions are really intended for the end user: use the ops as shown in the examples
section.

Note

The class of the returned object is the appropriate one.

Unary operators to invert a permutation are problematic in the package. I do not like using “id/x”
to represent a permutation inverse: the idiom introduces an utterly redundant object (“id”), and
forces the use of a binary operator where a unary operator is needed. Similar comments apply to
“x^-1”, which again introduces a redundant object (-1) and uses a binary operator.

Currently, “-x” returns the multiplicative inverse of x, but this is not entirely satisfactory either, as it
uses additive notation: the rest of the package uses multiplicative notation. Thus x*-x == id, which
looks a little odd but OTOH noone has a problem with x^-1 for inverses.

orbit 27

I would like to follow APL and use “/x”, but this does not seem to be possible in R. The natural
unary operator would be the exclamation mark “!x”. However, redefining the exclamation mark to
give permutation inverses, while possible, is not desirable because its precedence is too low. One
would like !x*y to return inverse(x)*y but instead standard precedence rules means that it returns
inverse(x*y). Earlier versions of the package interpreted !x as inverse(x), but it was a disaster:
to implement the commutator [x, y] = x−1y−1xy, for example, one would like to use !x*!y*x*y,
but this is interpreted as !(x*(!y*(x*y))); one has to use (!x)*(!y)*x*y. I found myself having
to use heaps of brackets everywhere. This caused such severe cognitive dissonance that I removed
exclamation mark for inverses from the package. I might reinstate it in the future. There does not
appear to be a way to define a new unary operator due to the construction of the parser.

Author(s)

Robin K. S. Hankin

Examples

x <- rperm(10,9) # word form
y <- rperm(10,9) # word form

x*y # products are given in word form but the print method coerces to cycle form
print_word(x*y)

x^5 # powers are given in cycle form

x^as.cycle(1:5) # group action (not integer power!); coerced to word.

x*inverse(x) == id # all TRUE

the 'sum' of two permutations is defined if their cycles are disjoint:
as.cycle(1:4) + as.cycle(7:9)

data(megaminx)
megaminx[1] + megaminx[7:12]

orbit Orbits of integers

Description

Finds the orbit of a given integer

Usage

orbit_single(c1,n1)
orbit(cyc,n)

28 permorder

Arguments

c1,n1 In (low-level) function orbit_single(), a cyclist and an integer vector respec-
tively

cyc,n In (vectorized) function orbit(), cyc is coerced to a cycle, and n is an integer
vector

Value

Given a cyclist c1 and integer n1, function orbit_single() returns the single cycle containing
integer n1. This is a low-level function, not intended for the end-user.

Function orbit() is the vectorized equivalent of orbit_single(). Vectorization is inherited from
cbind().

Author(s)

Robin K. S. Hankin

See Also

fixed

Examples

orbit(as.cycle("(123)"),1:5)
orbit(as.cycle(c("(12)","(123)(45)","(2345)")),1)
orbit(as.cycle(c("(12)","(123)(45)","(2345)")),1:3)

data(megaminx)
orbit(megaminx,13)

permorder The order of a permutation

Description

Returns the order of a permutation P : the smallest strictly positive integer n for which Pn is the
identity.

Usage

permorder(x, singly = TRUE)

Arguments

x Permutation, coerced to cycle form

singly Boolean, with default TRUE meaning to return the order of each element of the
vector, and FALSE meaning to return the order of the vector itself (that is, the
smallest strictly positive integer for which all(x^n==id)).

permutation 29

Details

Coerces its argument to cycle form.

The order of the identity permutation is 1.

Note

Uses mLCM() from the numbers package.

Author(s)

Robin K. S. Hankin

See Also

sgn

Examples

x <- rperm(5,20)
permorder(x)
permorder(x,FALSE)

stopifnot(all(is.id(x^permorder(x))))
stopifnot(is.id(x^permorder(x,FALSE)))

permutation Functions to create and coerce word objects and cycle objects

Description

Functions to create permutation objects. permutation is a virtual class.

Usage

word(M)
permutation(x)
is.permutation(x)
cycle(x)
is.word(x)
is.cycle(x)
as.word(x,n=NULL)
as.cycle(x)
cycle2word(x,n=NULL)
char2cycle(char)
cyc_len(n)
shift_cycle(n)
S3 method for class 'word'
as.matrix(x,...)

30 permutation

Arguments

M In function word(), a matrix with rows corresponding to permutations in word
form

x See details

n In functions as.word() and cycle2word(), the size of the word to return; in
function cyc_len(), the length of the cycle to return

char In function char2cycle() a character vector which is coerced to a cycle object

... Further arguments passed to as.matrix()

Details

Functions word() and cycle() are rather formal functions which make no attempt to coerce their
arguments into sensible forms. The user should use permutation(), which detects the form of the
input and dispatches to as.word() or as.cycle(), which are much more user-friendly.

Functions word() and cycle() are the only functions in the package which assign class word or
cycle to an object.

A word is a matrix whose rows correspond to permutations in word format.

A cycle is a list whose elements correspond to permutations in cycle form. A cycle object com-
prises elements which are informally dubbed ‘cyclists’. A cyclist is a list of integer vectors corre-
sponding to the cycles of the permutation.

Function cycle2word() converts cycle objects to word objects.

Function shift_cycle() is a convenience wrapper for as.cycle(seq_len(n)); cyc_len() is a
synonym.

It is a very common error (at least, it is for me) to use cycle() when you meant as.cycle().

The print method is sensitive to the value of option ‘print_word_as_cycle’, documented at print.Rd.

Function as.matrix.word() coerces a vector of permutations in word form to a matrix, each row
of which is a word. To get a permutation matrix (that is, a square matrix of ones and zeros with
exactly one entry of 1 in each row and each column), use perm_matrix().

Value

Returns a cycle object or a word object

Author(s)

Robin K. S. Hankin

See Also

cyclist

Examples

word(matrix(1:8,7,8)) # default print method coerces to cycle form

cycle(list(list(c(1,8,2),c(3,6)),list(1:2, 4:8)))

char2cycle(c("(1,4)(6,7)","(3,4,2)(8,19)", "(56)","(12345)(78)","(78)"))

jj <- c(4,2,3,1)

perm_matrix 31

as.word(jj)
as.cycle(jj)

as.cycle(1:2)*as.cycle(1:8) == as.cycle(1:8)*as.cycle(1:2) # FALSE!

x <- rperm(10,7)
y <- rperm(10,7)
as.cycle(commutator(x,y))

cycle(sapply(seq_len(9),cyc_len))

perm_matrix Permutation matrices

Description

Given a permutation, coerce to word form and return the corresponding permutation matrix

Usage

perm_matrix(p,s=size(p))
is.perm_matrix(M)
pm_to_perm(M)

Arguments

p Permutation, coerced to word form, of length 1

s Size of permutation matrix or permutation

M Permutation matrix

Details

Given a permutation p of size s, function perm_matrix() returns a square matrix with s rows and
s columns. Entries are either 0 or 1; each row and each column has exactly one entry of 1 and the
rest zero.

Row and column names of the permutation matrix are integers; this makes the printed version more
compact.

Function pm_to_perm() takes a permutation matrix and returns the equivalent permutation in word
form.

Note

Given a word p with size s, the idiom for perm_matrix() boils down to

M <- diag(s)
M[p,]

This is used explicitly in the representations vignette. There is another way:

32 print

M <- diag(s)
M[cbind(seq_len(s),p)] <- 1
M

which might be useful sometime.

See also the representation and order_of_ops vignettes, which discuss permutation matrices.

Author(s)

Robin K. S. Hankin

See Also

permutation

Examples

perm_matrix(rperm(1,9))

p1 <- rperm(1,40)
M1 <- perm_matrix(p1)
p2 <- rperm(1,40)
M2 <- perm_matrix(p2)

stopifnot(is.perm_matrix(M1))

stopifnot(all(solve(M1) == perm_matrix(inverse(p1))))
stopifnot(all(M1 %*% M2 == perm_matrix(p1*p2)))

stopifnot(p1 == pm_to_perm(perm_matrix(p1)))

data("megaminx")
image(perm_matrix(permprod(megaminx)),asp=1,axes=FALSE)

print Print methods for permutation objects

Description

Print methods for permutation objects with matrix-like printing for words and bracket notation for
cycle objects.

Usage

S3 method for class 'cycle'
print(x, ...)
S3 method for class 'word'
print(x, h = getOption("print_word_as_cycle"), ...)
as.character_cyclist(y,comma=TRUE)

print 33

Arguments

x Object of class permutation with word objects dispatched to print.word()
and cycle objects dispatched to print.cycle()

h Boolean, with default TRUE meaning to coerce words to cycle form before print-
ing. See details

... Further arguments (currently ignored)

y,comma In as.character.cyclist(), argument y is a list of cycles (a cyclist); and
comma is Boolean, specifying whether to include a comma in the output

Details

Printing of word objects is controlled by options("print_word_as_cycle"). The default be-
haviour is to coerce a word to cycle form and print that, with a notice that the object itself was
coerced from word.

If options("print_word_as_cycle") is FALSE, then objects of class word are printed as a matrix
with rows being the permutations and fixed points indicated with a dot.

Function as.character_cyclist() is an internal function used by print.cycle(), and is not
really designed for the end-user. It takes a cyclist and returns a character string.

Function print_word() and print_cycle() are provided for power users. These functions print
their argument directly as word or cycle form; they coerce to the appropriate form. Use print_word()
if you have a permutation in word form and want to inspect it as a word form but (for some reason)
do not want to set options("print_word_as_cycle"). See size.Rd for a use-case.

The print method includes experimental functionality to display permutations of sets other than the
default of integers 1, 2, . . . , n. Both cycle and word print methods are sensitive to option perm_set:
the default value of NULL means to use integers. The symbols may be the elements of any character
vector; use idiom such as

options("perm_set" = letters)

to override the default. But beware! If the permutation includes numbers greater than the length
of perm_set, then NA will be printed. It is possible to use vectors with elements of more than one
character (e.g. state.abb).

In the printing of cycle objects, commas are controlled with option "comma". The default NULL
means including commas in the representation if the size of the permutation exceeds 9. This works
well for integers but is less suitable when using letters or state abbreviations. Force the use of
commas by setting the option to TRUE or FALSE, e.g.

options("comma" = TRUE)

The print method does not change the internal representation of word or cycle objects, it only affects
how they are printed.

There is a package vignette (type vignette("print") at the command line) which gives more
details and long-form documentation.

Value

Returns its argument invisibly, after printing it.

34 rperm

Author(s)

Robin K. S. Hankin

See Also

nicify_cyclist

Examples

generate a permutation in *word* form:
x <- rperm(4,9)

default behaviour is to print in cycle form irregardless:
x

change default using options():
options(print_word_as_cycle=FALSE)

objects in word form now printed using matrix notation:
x

printing of cycle form objects not altered:
as.cycle(x)

restore default:
options(print_word_as_cycle=TRUE)

as.character_cyclist(list(1:4,10:11,20:33)) # x a cyclist;
as.character_cyclist(list(c(1,5,4),c(2,2))) # does not check for consistency
as.character_cyclist(list(c(1,5,4),c(2,9)),comma=FALSE)

options("perm_set" = letters)
rperm(r=9)
options("perm_set" = NULL) # restore default

rperm Random permutations

Description

Function rperm() creates a word object of random permutations. Function rcyc() creates random
permutations comprising a single (group-theoretic) cycle of a specified length (r1cyc() is a low-
level helper function).

Usage

rperm(n=10,r=7,moved=NA)
rcyc(n,len,r=len)
r1cyc(len,r=len)

sgn 35

Arguments

n Number of permutations to create

r Size of permutations

len Length of cycles in rcyc() and r1cyc()

moved In function rperm(), integer specifying how many elements can move (that is,
how many elements do not map to themselves), with default NA meaning to
choose a permutation at random. This is useful if you want a permutation that
has a compact cycle representation

Value

Returns an object of class word

Note

Argument moved specifies a maximum number of elements that do not map to themselves; the actual
number of non-fixed elements might be lower (as some elements might map to themselves). You
can control the number of non-fixed elements precisely with argument len of function rcyc(),
although this will give only permutations with a single (group-theoretic) cycle.

Author(s)

Robin K. S. Hankin

See Also

size

Examples

rperm()
as.cycle(rperm(30,9))
rperm(10,9,2)

rcyc(20,5)
rcyc(20,5,9)

sgn Sign of a permutation

Description

The sign of a permutation is ±1 depending on whether it is even or odd

Usage

sgn(x)
is.even(x)
is.odd(x)

36 shape

Arguments

x permutation object

Details

Coerces to cycle form

Author(s)

Robin K. S. Hankin

See Also

shape

Examples

sgn(id) # always problematic

sgn(rperm(10,5))

x <- rperm(40,6)
y <- rperm(40,6)

stopifnot(all(sgn(x*y) == sgn(x)*sgn(y))) # sgn() is a homomorphism

z <- as.cycle(rperm(20,9,5))
z[is.even(z)]
z[is.odd(z)]

shape Shape of a permutation

Description

Returns the shape of a permutation. If given a word, it coerces to cycle form.

Usage

shape(x, drop = TRUE,id1=TRUE)
shape_cyclist(cyc,id1=TRUE)
padshape(x, drop = TRUE, n=NULL)
shapepart(x)
shapepart_cyclist(cyc,n=NULL)

shape 37

Arguments

x Object of class cycle (if not, coerced)
cyc A cyclist
n Integer governing the size of the partition assumed, with default NULL meaning

to use the largest element
drop Boolean, with default TRUE meaning to unlist if possible
id1 Boolean, with default TRUE in function shape_cyclist() meaning that the

shape of the identity is “1” and FALSE meaning that the shape is NULL

Value

Function shape() returns a list with elements representing the lengths of the component cycles.

Function shapepart() returns an object of class partition showing the permutation as a set par-
tition of disjoint cycles.

Note

Function shape() returns the lengths of the cycles in the order returned by nicify_cyclist(), so
not necessarily in increasing or decreasing order.

Author(s)

Robin K. S. Hankin

See Also

size

Examples

jj <- as.cycle(c("123","","(12)(34)","12345"))
jj
shape(jj)

shape(rperm(10,9)) # coerced to cycle

data(megaminx)

shape(megaminx)
jj <- megaminx*megaminx[1]

identical(shape(jj),shape(tidy(jj))) #tidy() does not change shape

allperms(3)
shapepart(allperms(3))
shapepart(rperm(10,5))

shape_cyclist(list(1:4,8:9))
shapepart_cyclist(list(1:4,8:9))

38 size

size Gets or sets the size of a permutation

Description

The ‘size’ of a permutation is the cardinality of the set for which it is a bijection.

Usage

size(x)
addcols(M,n)
S3 method for class 'word'
size(x)
S3 method for class 'cycle'
size(x)
S3 replacement method for class 'word'
size(x) <- value
S3 replacement method for class 'cycle'
size(x) <- value

Arguments

x A permutation object

M A matrix that may be coerced to a word

n,value the size to set to, an integer

Details

For a word object, the size is equal to the number of columns. For a cycle object, it is equal to the
largest element of any cycle.

Function addcols() is a low-level function that operates on, and returns, a matrix. It just adds
columns to the right of M, with values equal to their column numbers, thus corresponding to fixed el-
ements. The resulting matrix has n columns. This function cannot remove columns, so if n<ncol(M)
an error is returned.

Setting functions cannot decrease the size of a permutation; use trim() for this.

It is meaningless to change the size of a cycle object. Trying to do so will result in an error. But
you can coerce cycle objects to word form, and change the size of that.

Author(s)

Robin K. S. Hankin

See Also

fixed

tidy 39

Examples

size(as.cycle(c("(17)","(123)(45)"))) # should be 7

x <- as.word(as.cycle("123"))
print_word(x)
size(x) <- 9
print_word(x)

size(as.cycle(1:5) + as.cycle(100:101))

size(id)

tidy Utilities to neaten permutation objects

Description

Various utilities to neaten word objects by removing fixed elements

Usage

tidy(x)
trim(x)

Arguments

x Object of class word, or in the case of tidy(), coerced to class word

Details

Function trim() takes a word and, starting from the right, strips off columns corresponding to fixed
elements until it finds a non-fixed element. This makes no sense for cycle objects; if x is of class
cycle, an error is returned.

Function tidy() is more aggressive. This firstly removes all fixed elements, then renames the non-
fixed ones to match the new column numbers. The map is an isomorphism (sic) with respect to
composition.

Value

Returns an object of class word

Note

Results in empty (that is, zero-column) words if a vector of identity permutations is given

Author(s)

Robin K. S. Hankin

See Also

fixed,size,nicify_cyclist

40 valid

Examples

as.cycle(5:3)+as.cycle(7:9)
tidy(as.cycle(5:3)+as.cycle(7:9))

as.cycle(tidy(c(as.cycle(1:2),as.cycle(6:7))))

nicify_cyclist(list(c(4,6), c(7), c(2,5,1), c(8,3)))

data(megaminx)
tidy(megaminx) # has 120 columns, not 129
stopifnot(all(unique(sort(unlist(as.cycle(tidy(megaminx)),recursive=TRUE)))==1:120))

jj <- megaminx*megaminx[1]
stopifnot(identical(shape(jj),shape(tidy(jj)))) #tidy() does not change shape

valid Functions to validate permutations

Description

Functions to validate permutation objects: if valid, return TRUE and if not valid, generate a warning()
and return FALSE.

Function singleword.valid() takes an integer vector, interpreted as a word, and checks that it is
a permutation of seq_len(max(x)).

Function cycle.valid() takes a cyclist and checks for disjoint cycles of strictly positive integers
with no repeats.

Usage

singleword_valid(w)
cyclist_valid(x)

Arguments

x In function cycle_valid(), a cyclist

w In function singleword_valid(), an integer vector

Value

Returns either TRUE, or stops with an informative error message

Author(s)

Robin K. S. Hankin

See Also

cyclist

valid 41

Examples

singleword_valid(sample(1:9)) # TRUE
singleword_valid(c(3L,4L,2L,1L)) # TRUE
singleword_valid(c(3,4,2,1)) # FALSE (not integer)
singleword_valid(c(3L,3L,2L,1L)) # FALSE (3 repeated)

cyclist_valid(list(c(1,8,2),c(3,6))) # TRUE
cyclist_valid(list(c(1,8,2),c(3,6))) # FALSE ('8' is repeated)
cyclist_valid(list(c(1,8,1),c(3,6))) # FALSE ('1' is repeated)
cyclist_valid(list(c(0,8,2),c(3,6))) # FALSE (zero element)

Index

∗ datasets
dodecahedron, 14
megaminx, 22
nullperm, 24

∗ package
permutations-package, 2

∗ symbmath
permutation, 29
size, 38
valid, 40

∗ symbolmath
fixed, 17
Ops.permutation, 25
orbit, 27
perm_matrix, 31
print, 32
rperm, 34
tidy, 39

. (commutator), 9
[,dot,ANY,ANY-method (commutator), 9
[,dot,ANY,missing-method (commutator), 9
[,dot,matrix,matrix-method

(commutator), 9
[,dot,missing,ANY-method (commutator), 9
[,dot,missing,missing-method

(commutator), 9
[,dot,permutation,permutation,ANY-method

(commutator), 9
[,dot,permutation,permutation-method

(commutator), 9
[,dot-method (commutator), 9
[.dot (commutator), 9
%~% (conjugate), 10

addcols (size), 38
allcyc (allperms), 4
allcycles (allperms), 4
allperms, 4, 4
are_conjugate (conjugate), 10
are_conjugate_single (conjugate), 10
as.character.cycle (print), 32
as.character_cyclist (print), 32
as.cycle, 12
as.cycle (permutation), 29

as.function.cycle
(as.function.permutation), 5

as.function.permutation, 5
as.function.word

(as.function.permutation), 5
as.matrix (permutation), 29
as.perm_matrix (perm_matrix), 31
as.word (permutation), 29

c, 6
capply, 7
Cayley (cayley), 8
cayley, 8
ccps (Ops.permutation), 25
char2cycle (permutation), 29
char2cyclist_single (cyclist), 11
commutator, 9
conjugate, 10
cyc_len (permutation), 29
cycle (permutation), 29
cycle2word (permutation), 29
cycle_power, 20
cycle_power (Ops.permutation), 25
cycle_power_single (Ops.permutation), 25
cycle_sum (Ops.permutation), 25
cycle_sum_single (Ops.permutation), 25
cyclist, 11, 30, 40
cyclist2word_single (cyclist), 11
cyclist_valid (valid), 40

DB (megaminx), 22
derangement, 13
DG (megaminx), 22
dodecahedron, 14
dodecahedron_edge (dodecahedron), 14
dodecahedron_face (dodecahedron), 14
dot (commutator), 9
dot-class (commutator), 9
dot_error (commutator), 9
DY (megaminx), 22

extract (commutator), 9

faro, 14

42

INDEX 43

faro_gen (faro), 14
fbin, 12, 15
fbin_inv (fbin), 15
fbin_single (fbin), 15
fixed, 17, 28, 38, 39
full_dodecahedron_edge (dodecahedron),

14
full_dodecahedron_face (dodecahedron),

14

get1, 18
get_cyc (get1), 18
group_action, 9, 10
group_action (Ops.permutation), 25
Gy (megaminx), 22

helper (Ops.permutation), 25

id, 18, 25
inverse, 19
inverse_cyclist_single (inverse), 19
inverse_word_single (inverse), 19
is.cycle (permutation), 29
is.derangement, 19
is.derangement (derangement), 13
is.even (sgn), 35
is.id (id), 18
is.id_single_cycle (id), 18
is.odd (sgn), 35
is.perm_matrix (perm_matrix), 31
is.permutation (permutation), 29
is.word (permutation), 29

jacobi (commutator), 9

LB (megaminx), 22
length, 21
length<-.permutation (length), 21
LG (megaminx), 22
LY (megaminx), 22

megaminx, 22
megaminx_colours (megaminx), 22
megaminx_pentagons (megaminx_plotter),

23
megaminx_plotter, 22, 23
megaminx_quads (megaminx_plotter), 23
megaminx_triangles (megaminx_plotter),

23

names (length), 21
names<-.word (length), 21
nicify (cyclist), 11
nicify_cyclist, 16, 34, 39

nicify_cyclist (cyclist), 11
nullcycle (nullperm), 24
nullperm, 19, 24
nullword (nullperm), 24

O (megaminx), 22
Ops (Ops.permutation), 25
Ops.permutation, 25
orbit, 27
orbit_single (orbit), 27

padshape (shape), 36
perm_matrix, 31
permmatrix (perm_matrix), 31
permorder, 28
permprod (Ops.permutation), 25
permutation, 29, 32
permutation-class (commutator), 9
permutation_matrix (perm_matrix), 31
permutations (permutations-package), 2
permutations-package, 2
Pi (megaminx), 22
pm_to_perm (perm_matrix), 31
print, 32
print.cycle (print), 32
print.permutation (print), 32
print.word (print), 32
print_cycle (print), 32
print_word (print), 32
Pu (megaminx), 22

R (megaminx), 22
r1cyc (rperm), 34
rcyc (rperm), 34
rcycle (rperm), 34
remove_length_one (cyclist), 11
rep.permutation (c), 6
riffle (faro), 14
rperm, 34
rword (rperm), 34

sgn, 29, 35
shape, 10, 36, 36
shape_cyclist (shape), 36
shapepart (shape), 36
shapepart_cyclist (shape), 36
shift_cycle (permutation), 29
shuffle (faro), 14
singleword_valid (valid), 40
size, 6, 21, 35, 37, 38, 39
size<- (size), 38
standard (fbin), 15
standard_cyclist (fbin), 15

44 INDEX

superflip (megaminx), 22

tidy, 17, 39
trim (tidy), 39

valid, 12, 40
validity (valid), 40
vec2cyclist_single (cyclist), 11
vec2cyclist_single_cpp (cyclist), 11
vps (Ops.permutation), 25

W (megaminx), 22
word (permutation), 29
word_equal (Ops.permutation), 25
word_prod (Ops.permutation), 25
word_prod_single (Ops.permutation), 25

	permutations-package
	allperms
	as.function.permutation
	c
	capply
	cayley
	commutator
	conjugate
	cyclist
	derangement
	dodecahedron
	faro
	fbin
	fixed
	get1
	id
	inverse
	length
	megaminx
	megaminx_plotter
	nullperm
	Ops.permutation
	orbit
	permorder
	permutation
	perm_matrix
	print
	rperm
	sgn
	shape
	size
	tidy
	valid
	Index

