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checknames Check for valid model terms in a qgcomp fit

Description

This is an internal function called by qgcomp, qgcomp.glm.boot, and qgcomp.glm.noboot, but
is documented here for clarity. Generally, users will not need to call this function directly. This
function tries to determine whether there are non-linear terms in the underlying model, which helps
infer whether the appropriate function is called, and whether more explicit function calls are needed.

Usage

checknames(terms)

Arguments

terms model terms from attr(terms(modelfunction, data), "term.labels")

coxmsm_fit Marginal structural Cox model (MSM) fitting within quantile g-
computation

Description

this is an internal function called by qgcomp.cox.noboot, qgcomp.cox.boot, and qgcomp.cox.noboot,
but is documented here for clarity. Generally, users will not need to call this function directly.

Usage

coxmsm_fit(
f,
qdata,
intvals,
expnms,
main = TRUE,
degree = 1,
id = NULL,
weights,
cluster = NULL,
MCsize = 10000,
...

)
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Arguments

f an R formula representing the conditional model for the outcome, given all
exposures and covariates. Interaction terms that include exposure variables
should be represented via the AsIs function. Offset terms can be included via
Surv(time,event) ~ exposure + offset(z)

qdata a data frame with quantized exposures (as well as outcome and other covariates)

intvals sequence, the sequence of integer values that the joint exposure is ’set’ to for
estimating the msm. For quantile g-computation, this is just 0:(q-1), where q is
the number of quantiles of exposure.

expnms a character vector with the names of the columns in qdata that represent the
exposures of interest (main terms only!)

main logical, internal use: produce estimates of exposure effect (psi) and expected
outcomes under g-computation and the MSM

degree polynomial bases for marginal model (e.g. degree = 2 allows that the relation-
ship between the whole exposure mixture and the outcome is quadratic. De-
fault=1)

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster)

weights "case weights" - passed to the "weight" argument of coxph

cluster not yet implemented

MCsize integer: sample size for simulation to approximate marginal hazards ratios

... arguments to coxph (e.g. ties)

Details

This function first computes expected outcomes under hypothetical interventions to simultaneously
set all exposures to a specific quantile. These predictions are based on g-computation, where the
exposures are ‘quantized’, meaning that they take on ordered integer values according to their ranks,
and the integer values are determined by the number of quantile cutpoints used. The function then
takes these expected outcomes and fits an additional model (a marginal structural model) with the
expected outcomes as the outcome and the intervention value of the exposures (the quantile integer)
as the exposure. Under causal identification assumptions and correct model specification, the MSM
yields a causal exposure-response representing the incremental change in the expected outcome
given a joint intervention on all exposures.

See Also

qgcomp.cox.boot, and qgcomp.cox.noboot

Examples

set.seed(50)
dat <- data.frame(time=(tmg <- pmin(.1,rweibull(50, 10, 0.1))), d=1.0*(tmg<0.1),

x1=runif(50), x2=runif(50), z=runif(50))
expnms=paste0("x", 1:2)
qdata = quantize(dat, expnms)$data
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f = survival::Surv(time, d)~x1 + x2
fit <- survival::coxph(f, data = qdata, y=TRUE, x=TRUE)
r1 = qdata[1,,drop=FALSE]
times = survival::survfit(fit, newdata=r1, se.fit=FALSE)$time
(obj <- coxmsm_fit(f, qdata, intvals=c(0,1,2,3), expnms, main=TRUE, degree=1,

id=NULL, MCsize=100))
#dat2 <- data.frame(psi=seq(1,4, by=0.1))
#summary(predict(obj))
#summary(predict(obj, newdata=dat2))

glance.qgcompfit Glance at a qgcompfit object

Description

Glance accepts a model object and returns a tibble::tibble() with exactly one row of model sum-
maries. The summaries are typically goodness of fit measures, p-values for hypothesis tests on
residuals, or model convergence information.

Glance never returns information from the original call to the modeling function. This includes the
name of the modeling function or any arguments passed to the modeling function.

Glance does not calculate summary measures. Rather, it farms out these computations to appropri-
ate methods and gathers the results together. Sometimes a goodness of fit measure will be undefined.
In these cases the measure will be reported as NA. (Description taken from broom::glance help
file.)

Usage

## S3 method for class 'qgcompfit'
glance(x, ...)

Arguments

x a qgcompfit object

... Not used

homogeneity_test Hypothesis testing about joint effect of exposures on a multinomial
outcome

Description

Hypothesis testing about joint effect of exposures on a multinomial outcome

Usage

homogeneity_test(x, ...)
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Arguments

x Result from fit.

... Unused

homogeneity_test.qgcompmultfit

Hypothesis testing about joint effect of exposures on a multinomial
outcome

Description

Tests the null hypothesis that the joint effect of the mixture components is identical across all refer-
ent outcome types (homogeneity test for linear effect of the mixture on a quantized basis)

Usage

## S3 method for class 'qgcompmultfit'
homogeneity_test(x, ...)

Arguments

x Result from qgcomp multinomial fit (qgcompmultfit object).

... Unused

Value

qgcompmulttest object (list) with results of a chi-squared test

hurdlemsm_fit Secondary prediction method for the (hurdle) qgcomp MSM.

Description

this is an internal function called by qgcomp.hurdle.boot, but is documented here for clarity.
Generally, users will not need to call this function directly.



hurdlemsm_fit 7

Usage

hurdlemsm_fit(
f,
qdata,
intvals,
expnms,
main = TRUE,
degree = 1,
id = NULL,
weights,
MCsize = 10000,
containmix = list(count = TRUE, zero = TRUE),
bayes = FALSE,
x = FALSE,
msmcontrol = hurdlemsm_fit.control(),
...

)

Arguments

f an r formula representing the conditional model for the outcome, given all ex-
posures and covariates. Interaction terms that include exposure variables should
be represented via the AsIs function

qdata a data frame with quantized exposures (as well as outcome and other covariates)

intvals sequence, the sequence of integer values that the joint exposure is ’set’ to for
estimating the msm. For quantile g-computation, this is just 0:(q-1), where q is
the number of quantiles of exposure.

expnms a character vector with the names of the columns in qdata that represent the
exposures of interest (main terms only!)

main logical, internal use: produce estimates of exposure effect (psi) and expected
outcomes under g-computation and the MSM

degree polynomial bases for marginal model (e.g. degree = 2 allows that the relation-
ship between the whole exposure mixture and the outcome is quadratic. De-
fault=1)

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster)

weights not yet implemented

MCsize integer: sample size for simulation to approximate marginal hazards ratios

containmix named list of logical scalars with names "count" and "zero"

bayes not used

x keep design matrix? (logical)

msmcontrol named list from hurdlemsm_fit.control

... arguments to hurdle (e.g. dist)
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Details

This function first computes expected outcomes under hypothetical interventions to simultaneously
set all exposures to a specific quantile. These predictions are based on g-computation, where the
exposures are ‘quantized’, meaning that they take on ordered integer values according to their ranks,
and the integer values are determined by the number of quantile cutpoints used. The function then
takes these expected outcomes and fits an additional model (a marginal structural model) with the
expected outcomes as the outcome and the intervention value of the exposures (the quantile integer)
as the exposure. Under causal identification assumptions and correct model specification, the MSM
yields a causal exposure-response representing the incremental change in the expected outcome
given a joint intervention on all exposures.

See Also

qgcomp.cox.boot, and qgcomp.cox.noboot

Examples

set.seed(50)
n=100
## Not run:
dat <- data.frame(y=rbinom(n, 1, 0.5)*rpois(n, 1.2), x1=runif(n), x2=runif(n), z=runif(n))
expnms = c("x1", "x2")
q = 4
qdata = quantize(dat, q=q, expnms=expnms)$data
f = y ~ x1 + x2 + z | 1
msmfit <- hurdlemsm_fit(f, qdata, intvals=(1:q)-1, expnms, main=TRUE,

degree=1, id=NULL, MCsize=10000, containmix=list(count=TRUE, zero=FALSE),
x=FALSE)

msmfit$msmfit

## End(Not run)

hurdlemsm_fit.control Control of fitting parameters for zero inflated MSMs

Description

this is an internal function called by qgcomp.hurdle.boot, but is documented here for clarity.
Generally, users will not need to call this function directly.

Usage

hurdlemsm_fit.control(predmethod = rev(c("components", "catprobs")))
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Arguments

predmethod character in c("components", "catprobs"). "components" simulates from the
model parameters directly while "catprobs" simulates outcomes from the cat-
egory specific probabilities, which is output from predict.hurdle. The former
is slightly more flexible and stable, but the latter is preferred in zero inflated
negative bionomial models.

Details

Provides fine control over zero inflated MSM fitting

joint_test Hypothesis testing about joint effect of exposures on a multinomial
outcome

Description

Hypothesis testing about joint effect of exposures on a multinomial outcome

Usage

joint_test(x, ...)

Arguments

x Result from fit.

... Unused

joint_test.qgcompmultfit

Hypothesis testing about joint effect of exposures on a multinomial
outcome

Description

Tests the null hypothesis that the joint effect of the mixture components is null across all referent
outcome types (Test of global null effect of the mixture on a quantized basis)

Usage

## S3 method for class 'qgcompmultfit'
joint_test(x, ...)
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Arguments

x Result from qgcomp multinomial fit (qgcompmultfit object).

... Unused

Value

qgcompmulttest object (list) with results of a chi-squared test

metals Well water data

Description

Simulated well water measurements in North Carolina: 16 metals, 6 water chemistry measures,
and 2 health outcomes (y = continuous; disease_state = binary/time-to-event in combination with
disease_time)

A dataset containing well water measurements and health outcomes for 253 individuals. All con-
tinuous variables are standardized to have mean 0, standard deviation 1.

Usage

data(metals)

Format

A data frame with 253 rows and 24 variables:

y continuous birth outcome

disease_state binary outcome

disease_time time-to-disease_state: survival outcome censored at approximately the median

arsenic metal

barium metal

cadmium metal

calcium metal

chloride metal

chromium metal

copper metal

iron metal

lead metal

magnesium metal

manganese metal

mercury metal
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selenium metal

silver metal

sodium metal

zinc metal

mage35 Binary covariate: maternal age > 35

nitrate water chemistry measure

nitrite water chemistry measure

sulfate water chemistry measure

ph water chemistry measure

total_alkalinity water chemistry measure

total_hardness water chemistry measure

mice.impute.leftcenslognorm

Imputation for limits of detection problems

Description

This function integrates with mice to impute values below the LOD using a left censored log-normal
distribution. Note that "tobit" is an alias that uses a familiar term for this model.

Usage

mice.impute.leftcenslognorm(
y,
ry,
x,
wy = NULL,
lod = NULL,
debug = FALSE,
...

)

mice.impute.tobit(y, ry, x, wy = NULL, lod = NULL, debug = FALSE, ...)

Arguments

y Vector to be imputed

ry Logical vector of length length(y) indicating the the subset of elements in y to
which the imputation model is fitted. The ry generally distinguishes the ob-
served (TRUE) and missing values (FALSE) in y.

x Numeric design matrix with length(y) rows with predictors for y. Matrix x may
have no missing values.
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wy Logical vector of length length(y). A TRUE value indicates locations in y for
which imputations are created.

lod numeric vector of limits of detection (must correspond to index in original data)
OR list in which each element corresponds to observation level limits of detec-
tion for each variable (list index must correspond to index in original data)

debug logical, print extra info

... arguments to survreg

Details

While this function has utility far beyond qgcomp, it is included in the qgcomp package because it
will be useful for a variety of settings in which qgcomp is useful. Note that LOD problems where the
LOD is small, and the q parameter from qgcomp.glm.noboot or qgcomp.glm.boot is not large, the
LOD may be below the lowest quantile cutpoint which will yield identical datasets from the MICE
procedure in terms of quantized exposure data. If only exposures are missing, and they have low
LODs, then there will be no benefit in qgcomp from using MICE rather than imputing some small
value below the LOD.

Value

Vector with imputed data, same type as y, and of length sum(wy)

Examples

N = 100
set.seed(123)
dat <- data.frame(y=runif(N), x1=runif(N), x2=runif(N), z=runif(N))
true = qgcomp.glm.noboot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=2, family=gaussian())
mdat <- dat
mdat$x1 = ifelse(mdat$x1>0.5, mdat$x1, NA)
mdat$x2 = ifelse(mdat$x2>0.75, mdat$x2, NA)
cc <- qgcomp.glm.noboot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'),

data=mdat[complete.cases(mdat),], q=2, family=gaussian())

## Not run:
# note the following example imputes from the wrong parametric model and is expected to be biased
# as a result (but it demonstrates how to use qgcomp and mice together)
library("mice")
library("survival")
set.seed(1231)
impdat = mice(data = mdat,

method = c("", "leftcenslognorm", "leftcenslognorm", ""),
lod=c(NA, 0.5, 0.75, NA), debug=FALSE, m=10)

qc.fit.imp <- list(
call = call("qgcomp.glm.noboot(y~., expnms = c('x1', 'x2'), family=gaussian())"),
call1 = impdat$call,
nmis = impdat$nmis,
analyses = lapply(1:10, function(x) qgcomp.glm.noboot(y~., expnms = c("x1", "x2"),

data=complete(impdat, x), family=gaussian(), bayes=TRUE))
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)
#alternative way to specify limits of detection (useful if not all observations have same limit)
lodlist = list(rep(NA, N), rep(0.5, N), rep(0.75, N), rep(NA, N))
#lodlist = data.frame(rep(NA, N), rep(0.5, N), rep(0.75, N), rep(NA, N)) # also works
set.seed(1231)
impdat_alt = mice(data = mdat,

method = c("", "leftcenslognorm", "leftcenslognorm", ""),
lod=lodlist, debug=FALSE, m=10)

qc.fit.imp_alt <- list(
call = call("qgcomp.glm.noboot(y~., expnms = c('x1', 'x2'), family=gaussian())"),
call1 = impdat_alt$call,
nmis = impdat_alt$nmis,
analyses = lapply(1:10, function(x) qgcomp.glm.noboot(y~., expnms = c("x1", "x2"),

data=complete(impdat_alt, x), family=gaussian(), bayes=TRUE))
)
obj = pool(as.mira(qc.fit.imp))
obj_alt = pool(as.mira(qc.fit.imp_alt))
# true values
true
# complete case analysis
cc
# MI based analysis (identical answers for different ways to specify limits of detection)
summary(obj)
summary(obj_alt)

# summarizing weights (note that the weights should *not* be pooled
# because they mean different things depending on their direction)
expnms = c("x1", "x2")
wts = as.data.frame(t(sapply(qc.fit.imp$analyses,

function(x) c(-x$neg.weights, x$pos.weights)[expnms])))
eachwt = do.call(c, wts)
expwts = data.frame(Exposure = rep(expnms, each=nrow(wts)), Weight=eachwt)
library(ggplot2)
ggplot(data=expwts)+ theme_classic() +

geom_point(aes(x=Exposure, y=Weight)) +
geom_hline(aes(yintercept=0))

# this function can be used to impute from an intercept only model
# but you need to "trick" mice to bypass checks for collinearity by including
# a variable that does not need to have values imputed (here, y).
# The internal collinearity checks by the mice package remove collinear variables
# and then throws an error if no predictor variabls are retained. Here, the
# trick is to use the "predictorMatrix" parameter to "impute" the non-missing
# variable y using x1 (which does nothing), and remove all predictors from the model for x1.
# This function only imputes x1 from a log normal distribution.

impdat2 = mice(data = mdat[,c("y","x1")],
method = c("", "tobit"), remove.collinear=FALSE,
lod=c(NA, 0.5), debug=FALSE, m=1,
maxit=1, # maxit=1 because there is only 1 variable to impute
predictorMatrix = as.matrix(rbind(c(0,1), c(0,0))))

plot(density(complete(impdat2, 1)$x1))
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# now with survival data (very similar)
impdat = mice(data = mdat,

method = c("", "tobit", "tobit", ""),
lod=c(NA, 0.5, 0.75, NA), debug=FALSE)

qc.fit.imp <- list(
call = call("qgcomp.cox.noboot(Surv(y)~., expnms = c('x1', 'x2'))"),
call1 = impdat$call,
nmis = impdat$nmis,
analyses = lapply(1:5, function(x) qgcomp.cox.noboot(Surv(y)~., expnms = c("x1", "x2"),

data=complete(impdat, x)))
)
obj = pool(as.mira(qc.fit.imp))
# MI based analysis
summary(obj)

## End(Not run)

modelbound.boot Estimating qgcomp regression line confidence bounds

Description

Calculates: expected outcome (on the link scale), and upper and lower confidence intervals (both
pointwise and simultaneous)

Usage

modelbound.boot(x, alpha = 0.05, pwonly = FALSE)

Arguments

x "qgcompfit" object from qgcomp.glm.boot,

alpha alpha level for confidence intervals

pwonly logical: return only pointwise estimates (suppress simultaneous estimates)

Details

This method leverages the bootstrap distribution of qgcomp model coefficients to estimate pointwise
regression line confidence bounds. These are defined as the bounds that, for each value of the
independent variable X (here, X is the joint exposure quantiles) the 95% bounds (for example) for
the model estimate of the regression line E(Y|X) are expected to include the true value of E(Y|X)
in 95% of studies. The "simultaneous" bounds are also calculated, and the 95% simultaneous
bounds contain the true value of E(Y|X) for all values of X in 95% of studies. The latter are
more conservative and account for the multiple testing implied by the former. Pointwise bounds
are calculated via the standard error for the estimates of E(Y|X), while the simultaneous bounds
are estimated using the bootstrap method of Cheng (reference below). All bounds are large sample
bounds that assume normality and thus will be underconservative in small samples. These bounds
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may also inclue illogical values (e.g. values less than 0 for a dichotomous outcome) and should be
interpreted cautiously in small samples.

Reference:

Cheng, Russell CH. "Bootstrapping simultaneous confidence bands." Proceedings of the Winter
Simulation Conference, 2005.. IEEE, 2005.

Value

A data frame containing

linpred: The linear predictor from the marginal structural model

r/o/m: The canonical measure (risk/odds/mean) for the marginal structural model link

se....: the stndard error of linpred

ul..../ll....: Confidence bounds for the effect measure, and bounds centered at the canonical mea-
sure (for plotting purposes)

The confidence bounds are either "pointwise" (pw) and "simultaneous" (simul) confidence intervals
at each each quantized value of all exposures.

See Also

qgcomp.glm.boot

Examples

set.seed(12)
## Not run:
dat <- data.frame(x1=(x1 <- runif(50)), x2=runif(50), x3=runif(50), z=runif(50),

y=runif(50)+x1+x1^2)
ft <- qgcomp.glm.boot(y ~ z + x1 + x2 + x3, expnms=c('x1','x2','x3'), data=dat, q=5)
modelbound.boot(ft, 0.05)

## End(Not run)

msm.predict Secondary prediction method for the (non-survival) qgcomp MSM.

Description

this is an internal function called by qgcomp.glm.boot, but is documented here for clarity. Gener-
ally, users will not need to call this function directly.

Get predicted values from a qgcompfit object from qgcomp.glm.boot.

Usage

msm.predict(object, newdata = NULL)
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Arguments

object "qgcompfit" object from qgcomp.glm.boot function
newdata (optional) new set of data (data frame) with a variable called psi representing

the joint exposure level of all exposures under consideration

Details

(Not usually called by user) Makes predictions from the MSM (rather than the conditional g-
computation fit) from a "qgcompfit" object. Generally, this should not be used in favor of the default
predict.qgcompfit function. This function can only be used following the qgcomp.glm.boot
function. For the qgcomp.glm.noboot function, predict.qgcompfit gives identical inference to
predicting from an MSM.

Examples

set.seed(50)
dat <- data.frame(y=runif(50), x1=runif(50), x2=runif(50), z=runif(50))
obj <- qgcomp.glm.boot(y ~ z + x1 + x2 + I(z*x1), expnms = c('x1', 'x2'),

data=dat, q=4, B=10, seed=125)
dat2 <- data.frame(psi=seq(1,4, by=0.1))
summary(msm.predict(obj))
summary(msm.predict(obj, newdata=dat2))

msm_fit Fitting marginal structural model (MSM) within quantile g-
computation

Description

This is an internal function called by qgcomp, qgcomp.glm.boot, and qgcomp.glm.noboot, but is
documented here for clarity. Generally, users will not need to call this function directly.

Usage

msm_fit(
f,
qdata,
intvals,
expnms,
rr = TRUE,
main = TRUE,
degree = 1,
id = NULL,
weights,
bayes = FALSE,
MCsize = nrow(qdata),
hasintercept = TRUE,
...

)
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Arguments

f an r formula representing the conditional model for the outcome, given all ex-
posures and covariates. Interaction terms that include exposure variables should
be represented via the AsIs function

qdata a data frame with quantized exposures
intvals sequence, the sequence of integer values that the joint exposure is ’set’ to for

estimating the msm. For quantile g-computation, this is just 0:(q-1), where q is
the number of quantiles of exposure.

expnms a character vector with the names of the columns in qdata that represent the
exposures of interest (main terms only!)

rr logical, estimate log(risk ratio) (family=’binomial’ only)
main logical, internal use: produce estimates of exposure effect (psi) and expected

outcomes under g-computation and the MSM
degree polynomial bases for marginal model (e.g. degree = 2 allows that the relation-

ship between the whole exposure mixture and the outcome is quadratic. De-
fault=1)

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster)

weights "case weights" - passed to the "weight" argument of glm or bayesglm
bayes use underlying Bayesian model (arm package defaults). Results in penalized

parameter estimation that can help with very highly correlated exposures. Note:
this does not lead to fully Bayesian inference in general, so results should be
interpreted as frequentist.

MCsize integer: sample size for simulation to approximate marginal zero inflated model
parameters. This can be left small for testing, but should be as large as needed
to reduce simulation error to an acceptable magnitude (can compare psi coeffi-
cients for linear fits with qgcomp.zi.noboot to gain some intuition for the level
of expected simulation error at a given value of MCsize)

hasintercept (logical) does the model have an intercept?
... arguments to glm (e.g. family)

Details

This function first computes expected outcomes under hypothetical interventions to simultaneously
set all exposures to a specific quantile. These predictions are based on g-computation, where the
exposures are ‘quantized’, meaning that they take on ordered integer values according to their ranks,
and the integer values are determined by the number of quantile cutpoints used. The function then
takes these expected outcomes and fits an additional model (a marginal structural model) with the
expected outcomes as the outcome and the intervention value of the exposures (the quantile integer)
as the exposure. Under causal identification assumptions and correct model specification, the MSM
yields a causal exposure-response representing the incremental change in the expected outcome
given a joint intervention on all exposures.

See Also

qgcomp.glm.boot, and qgcomp
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Examples

set.seed(50)
dat <- data.frame(y=runif(200), x1=runif(200), x2=runif(200), z=runif(200))
X <- c('x1', 'x2')
qdat <- quantize(dat, X, q=4)$data
mod <- msm_fit(f=y ~ z + x1 + x2 + I(x1*x2),

expnms = c('x1', 'x2'), qdata=qdat, intvals=1:4, bayes=FALSE)
summary(mod$fit) # outcome regression model
summary(mod$msmfit) # msm fit (variance not valid - must be obtained via bootstrap)

msm_multinomial_fit Fitting marginal structural model (MSM) within quantile g-
computation

Description

This is an internal function called by qgcomp.multinomial.boot, but is documented here for clar-
ity. Generally, users will not need to call this function directly.

Usage

msm_multinomial_fit(
f,
qdata,
intvals,
expnms,
main = TRUE,
degree = 1,
id = NULL,
weights,
bayes = FALSE,
MCsize = nrow(qdata),
hasintercept = TRUE,
...

)

Arguments

f an r formula representing the conditional model for the outcome, given all ex-
posures and covariates. Interaction terms that include exposure variables should
be represented via the AsIs function

qdata a data frame with quantized exposures

intvals sequence, the sequence of integer values that the joint exposure is ’set’ to for
estimating the msm. For quantile g-computation, this is just 0:(q-1), where q is
the number of quantiles of exposure.

expnms a character vector with the names of the columns in qdata that represent the
exposures of interest (main terms only!)
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main logical, internal use: produce estimates of exposure effect (psi) and expected
outcomes under g-computation and the MSM

degree polynomial bases for marginal model (e.g. degree = 2 allows that the relation-
ship between the whole exposure mixture and the outcome is quadratic. De-
fault=1)

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster)

weights "case weights" - passed to the "weight" argument of glm or bayesglm

bayes use underlying Bayesian model (arm package defaults). Results in penalized
parameter estimation that can help with very highly correlated exposures. Note:
this does not lead to fully Bayesian inference in general, so results should be
interpreted as frequentist.

MCsize integer: sample size for simulation to approximate marginal zero inflated model
parameters. This can be left small for testing, but should be as large as needed
to reduce simulation error to an acceptable magnitude (can compare psi coeffi-
cients for linear fits with qgcomp.zi.noboot to gain some intuition for the level
of expected simulation error at a given value of MCsize)

hasintercept (logical) does the model have an intercept?

... arguments to glm (e.g. family)

Details

This function first computes expected outcomes under hypothetical interventions to simultaneously
set all exposures to a specific quantile. These predictions are based on g-computation, where the
exposures are ‘quantized’, meaning that they take on ordered integer values according to their ranks,
and the integer values are determined by the number of quantile cutpoints used. The function then
takes these expected outcomes and fits an additional model (a marginal structural model) with the
expected outcomes as the outcome and the intervention value of the exposures (the quantile integer)
as the exposure. Under causal identification assumptions and correct model specification, the MSM
yields a causal exposure-response representing the incremental change in the expected outcome
given a joint intervention on all exposures.

See Also

qgcomp.glm.boot, and qgcomp

Examples

data("metals") # from qgcomp package
# create categorical outcome from the existing continuous outcome (usually, one will already exist)
metals$ycat = factor(quantize(metals, "y",q=4)$data$y, levels=c("0", "1", "2", "3"),

labels=c("cct", "ccg", "aat", "aag"))
# restrict to smaller dataset for simplicity
smallmetals = metals[,c("ycat", "arsenic", "lead", "cadmium", "mage35")]

### 1: Define mixture and underlying model ####
mixture = c("arsenic", "lead", "cadmium")
f0 = ycat ~ arsenic + lead + cadmium # the multinomial model
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# (be sure that factor variables are properly coded ahead of time in the dataset)
qdat <- quantize(smallmetals, mixture, q=4)$data
mod <- msm_multinomial_fit(f0,

expnms = mixture, qdata=qdat, intvals=1:4, bayes=FALSE)
summary(mod$fit) # outcome regression model
summary(mod$msmfit) # msm fit (variance not valid - must be obtained via bootstrap)

plot.qgcompfit Default plotting method for a qgcompfit object

Description

Plot a quantile g-computation object. For qgcomp.glm.noboot, this function will create a butterfly
plot of weights. For qgcomp.glm.boot, this function will create a box plot with smoothed line
overlaying that represents a non-parametric fit of a model to the expected outcomes in the population
at each quantile of the joint exposures (e.g. ’1’ represents ’at the first quantile for every exposure’)

Usage

## S3 method for class 'qgcompfit'
plot(
x,
suppressprint = FALSE,
pointwisebars = TRUE,
modelfitline = TRUE,
modelband = TRUE,
flexfit = TRUE,
pointwiseref = ceiling(x$q/2),
...

)

## S3 method for class 'qgcompmultfit'
plot(
x,
suppressprint = FALSE,
pointwisebars = TRUE,
modelfitline = TRUE,
modelband = TRUE,
flexfit = TRUE,
pointwiseref = ceiling(x$q/2),
...

)

Arguments

x "qgcompfit" object from qgcomp.glm.noboot, qgcomp.glm.boot, qgcomp.cox.noboot,
qgcomp.cox.boot, qgcomp.zi.noboot or qgcomp.zi.boot functions
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suppressprint If TRUE, suppresses the plot, rather than printing it by default (it can be saved
as a ggplot2 object (or list of ggplot2 objects if x is from a zero- inflated model)
and used programmatically) (default = FALSE)

pointwisebars (boot.gcomp only) If TRUE, adds 95% error bars for pointwise comparisons of
E(Y|joint exposure) to the smooth regression line plot

modelfitline (boot.gcomp only) If TRUE, adds fitted (MSM) regression line of E(Y|joint ex-
posure) to the smooth regression line plot

modelband If TRUE, adds 95% prediction bands for E(Y|joint exposure) (the MSM fit)

flexfit (boot.gcomp only) if TRUE, adds flexible interpolation of predictions from un-
derlying (conditional) model

pointwiseref (boot.gcomp only) integer: which category of exposure (from 1 to q) should
serve as the referent category for pointwise comparisons? (default=1)

... unused

Functions

• plot(qgcompmultfit): Plot method for qgcomp multinomial fits

See Also

qgcomp.glm.noboot, qgcomp.glm.boot, and qgcomp

Examples

set.seed(12)
dat <- data.frame(x1=(x1 <- runif(100)), x2=runif(100), x3=runif(100), z=runif(100),

y=runif(100)+x1+x1^2)
ft <- qgcomp.glm.noboot(y ~ z + x1 + x2 + x3, expnms=c('x1','x2','x3'), data=dat, q=4)
ft
# display weights
plot(ft)
# examining fit
plot(ft$fit, which=1) # residual vs. fitted is not straight line!
## Not run:

# using non-linear outcome model
ft2 <- qgcomp.glm.boot(y ~ z + x1 + x2 + x3 + I(x1*x1), expnms=c('x1','x2','x3'),
data=dat, q=4, B=10)
ft2
plot(ft2$fit, which=1) # much better looking fit diagnostics suggests
# it is better to include interaction term for x
plot(ft2) # the msm predictions don't match up with a smooth estimate
# of the expected outcome, so we should consider a non-linear MSM

# using non-linear marginal structural model
ft3 <- qgcomp.glm.boot(y ~ z + x1 + x2 + x3 + I(x1*x1), expnms=c('x1','x2','x3'),
data=dat, q=4, B=10, degree=2)
# plot(ft3$fit, which=1) - not run - this is identical to ft2 fit
plot(ft3) # the MSM estimates look much closer to the smoothed estimates
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# suggesting the non-linear MSM fits the data better and should be used
# for inference about the effect of the exposure

# binary outcomes, logistic model with or without a log-binomial marginal
structural model
dat <- data.frame(y=rbinom(100,1,0.5), x1=runif(100), x2=runif(100), z=runif(100))
fit1 <- qgcomp.glm.boot(y ~ z + x1 + x2, family="binomial", expnms = c('x1', 'x2'),

data=dat, q=9, B=100, rr=FALSE)
fit2 <- qgcomp.glm.boot(y ~ z + x1 + x2, family="binomial", expnms = c('x1', 'x2'),

data=dat, q=9, B=100, rr=TRUE)
plot(fit1)
plot(fit2)
# Using survival data ()
set.seed(50)
N=200
dat <- data.frame(time=(tmg <- pmin(.1,rweibull(N, 10, 0.1))),

d=1.0*(tmg<0.1), x1=runif(N), x2=runif(N), z=runif(N))
expnms=paste0("x", 1:2)
f = survival::Surv(time, d)~x1 + x2
(fit1 <- survival::coxph(f, data = dat))
# non-bootstrap method to get a plot of weights
(obj <- qgcomp.cox.noboot(f, expnms = expnms, data = dat))
plot(obj)

# bootstrap method to get a survival curve
# this plots the expected survival curve for the underlying (conditional) model
# as well as the expected survival curve for the MSM under the following scenarios:
# 1) highest joint exposure category
# 2) lowest joint exposure category
# 3) average across all exposure categories
# differences between the MSM and conditional fit suggest that the MSM is not flexible
# enough to accomodate non-linearities in the underlying fit (or they may simply signal that
# MCSize should be higher). Note that if linearity
# is assumed in the conditional model, the MSM will typically also appear linear and
# will certainly appear linear if no non-exposure covariates are included in the model
# not run (slow when using boot version to proper precision)
(obj2 <- qgcomp.cox.boot(f, expnms = expnms, data = dat, B=10, MCsize=2000))
plot(obj2)

## End(Not run)

pointwisebound.boot Estimating pointwise comparisons for qgcomp.glm.boot objects

Description

Calculates: expected outcome (on the link scale), mean difference (link scale) and the standard error
of the mean difference (link scale) for pointwise comparisons
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Usage

pointwisebound.boot(x, pointwiseref = 1, alpha = 0.05)

Arguments

x "qgcompfit" object from qgcomp.glm.boot,

pointwiseref referent quantile (e.g. 1 uses the lowest joint-exposure category as the referent
category for calculating all mean differences/standard deviations)

alpha alpha level for confidence intervals

Details

The comparison of interest following a qgcomp fit is often comparisons of model predictions at
various values of the joint-exposures (e.g. expected outcome at all exposures at the 1st quartile
vs. the 3rd quartile). The expected outcome at a given joint exposure, and marginalized over non-
exposure covariates (W), is given as E(Y^s|S) = sum_w E_w(Y|S,W)Pr(W) = sum_i E(Y_i|S) where
Pr(W) is the emprical distribution of W and S takes on integer values 0 to q-1. Thus, comparisons
are of the type E_w(Y|S=s) - E_w(Y|S=s2) where s and s2 are two different values of the joint
exposures (e.g. 0 and 2). This function yields E_w(Y|S) as well as E_w(Y|S=s) - E_w(Y|S=p)
where s is any value of S and p is the value chosen via "pointwise ref" - e.g. for binomial variables
this will equal the risk/ prevalence difference at all values of S, with the referent category S=p-1.
The standard error of E(Y|S=s) - E(Y|S=p) is calculated from the bootstrap covariance matrix of
E_w(Y|S), such that the standard error for E_w(Y|S=s) - E_w(Y|S=p) is given by

Var(E_w(Y|S=s)) + - Var(E_w(Y|S=p)) - 2*Cov(E_w(Y|S=p), - E_w(Y|S=s))

This is used to create pointwise confidence intervals. Note that this differs slightly from the
pointwisebound.noboot function, which estimates the variance of the conditional regression line
given by E(Y|S,W=w), where w is a vector of medians of W (i.e. predictions are made at the median
value of all covariates).

Value

A data frame containing

linpred: The linear predictor from the marginal structural model

rr/or/mean.diff: The canonical effect measure (risk ratio/odds ratio/mean difference) for the marginal
structural model link

se....: the stndard error of the effect measure

ul..../ll....: Confidence bounds for the effect measure, and bounds centered at the linear predictor
(for plotting purposes)

See Also

qgcomp.glm.boot, pointwisebound.noboot
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Examples

set.seed(12)
## Not run:
n=100
# non-linear model for continuous outcome
dat <- data.frame(x1=(x1 <- runif(100)), x2=runif(100), x3=runif(100), z=runif(100),

y=runif(100)+x1+x1^2)
ft <- qgcomp.glm.boot(y ~ z + x1 + x2 + x3, expnms=c('x1','x2','x3'), data=dat, q=10)
pointwisebound.boot(ft, alpha=0.05, pointwiseref=3)

## End(Not run)

pointwisebound.noboot Estimating pointwise comparisons for qgcomp.glm.noboot objects

Description

Calculates: expected outcome (on the link scale), mean difference (link scale) and the standard error
of the mean difference (link scale) for pointwise comparisons

Usage

pointwisebound.noboot(x, alpha = 0.05, pointwiseref = 1)

Arguments

x "qgcompfit" object from qgcomp.glm.noboot,

alpha alpha level for confidence intervals

pointwiseref referent quantile (e.g. 1 uses the lowest joint-exposure category as the referent
category for calculating all mean differences/standard deviations)

Details

The comparison of interest following a qgcomp fit is often comparisons of model predictions at
various values of the joint-exposures (e.g. expected outcome at all exposures at the 1st quartile
vs. the 3rd quartile). The expected outcome at a given joint exposure and at a given level of
non-exposure covariates (W=w) is given as E(Y|S,W=w), where S takes on integer values 0 to q-
1. Thus, comparisons are of the type E(Y|S=s,W=w) - E(Y|S=s2,W=w) where s and s2 are two
different values of the joint exposures (e.g. 0 and 2). This function yields E(Y|S,W=w) as well as
E(Y|S=s,W=w) - E(Y|S=p,W=w) where s is any value of S and p is the value chosen via "pointwise
ref" - e.g. for binomial variables this will equal the risk/ prevalence difference at all values of S, with
the referent category S=p-1. For the non-boostrapped version of quantile g-computation (under a
linear model). Note that w is taken to be the referent level of covariates so that if meaningful values
of E(Y|S,W=w) and E(Y|S=s,W=w) - E(Y|S=p,W=w) are desired, then it is advisable to set the
referent levels of W to meaningful values. This can be done by, e.g. centering continuous age so
that the predictions are made at the population mean age, rather than age 0.
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Note that function only works with standard "qgcompfit" objects from qgcomp.glm.noboot (so it
doesn’t work with zero inflated, hurdle, or Cox models)

Variance for the overall effect estimate is given by: transpose(G)Cov(β)G

Where the "gradient vector" G is given by

G = [∂(f(β))/∂β1 = 1, ..., ∂(f(β))/∂β3k = 1]

f(β) =
∑p

i βi, and ∂y/∂x denotes the partial derivative/gradient. The vector G takes on values
that equal the difference in quantiles of S for each pointwise comparison (e.g. for a comparison of
the 3rd vs the 5th category, G is a vector of 2s)

This variance is used to create pointwise confidence intervals via a normal approximation: (e.g.
upper 95% CI = psi + variance*1.96)

Value

A data frame containing

hx: The "partial" linear predictor β0 + ψ
∑

j X
q
jwj , or the effect of the mixture + intercept after

conditioning out any confounders. This is similar to the h(x) function in bkmr. This is not
a full prediction of the outcome, but only the partial outcome due to the intercept and the
confounders

rr/or/mean.diff: The canonical effect measure (risk ratio/odds ratio/mean difference) for the marginal
structural model link

se....: the stndard error of the effect measure

ul..../ll....: Confidence bounds for the effect measure

See Also

qgcomp.glm.noboot, pointwisebound.boot

Examples

set.seed(12)
## Not run:
n = 100
dat <- data.frame(x1=(x1 <- runif(n)), x2=(x2 <- runif(n)),

x3=(x3 <- runif(n)), z=(z <- runif(n)),
y=rnorm(n)+x1 + x2 - x3 +z)

# linear model for continuous outcome
ft <- qgcomp.glm.noboot(y ~ z + x1 + x2 + x3,

expnms=c('x1','x2','x3'), data=dat, q=10)
ft2 <- qgcomp.glm.boot(y ~ z + x1 + x2 + x3,

expnms=c('x1','x2','x3'), data=dat, q=10)
pointwisebound.noboot(ft, alpha=0.05, pointwiseref=3)
pointwisebound.boot(ft2, alpha=0.05, pointwiseref=3)
dat <- data.frame(x1=(x1 <- runif(n)), x2=(x2 <- runif(n)),

x3=(x3 <- runif(n)), z=(z <- runif(n)),
y=rbinom(n, 1, 1/(1+exp(-(x1 + x2 - x3 +z)))))

# glms for binary outcome, centering covariate to a potentially more meaningful value
dat$zcen = dat$z - mean(dat$z)
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ft <- qgcomp.glm.noboot(y ~ zcen + x1 + x2 + x3,
expnms=c('x1','x2','x3'), data=dat, q=10, family=binomial())

ft2 <- qgcomp.glm.boot(y ~ zcen + x1 + x2 + x3,
expnms=c('x1','x2','x3'), data=dat, q=10, family=binomial())

pointwisebound.noboot(ft, alpha=0.05, pointwiseref=3)
pointwisebound.boot(ft2, alpha=0.05, pointwiseref=3)
dat$z = as.factor(sample(1:3, n, replace=TRUE))
ftf <- qgcomp.glm.noboot(y ~ zcen + x1 + x2 + x3,

expnms=c('x1','x2','x3'), data=dat, q=10, family=binomial())
pointwisebound.noboot(ftf, alpha=0.05, pointwiseref=3)

## End(Not run)

predict.qgcompfit Default prediction method for a qgcompfit object (non-survival out-
comes only)

Description

get predicted values from a qgcompfit object, or make predictions in a new set of data based on the
qgcompfit object. Note that when making predictions from an object from qgcomp.glm.boot, the
predictions are made from the (conditional) g-computation model rather than the marginal structural
model. Predictions from the marginal structural model can be obtained via msm.predict. Note
that this function accepts non-quantized exposures in "newdata" and automatically quantizes them
according to the quantile cutpoints in the original fit.

Usage

## S3 method for class 'qgcompfit'
predict(object, expnms = NULL, newdata = NULL, type = "response", ...)

Arguments

object "qgcompfit" object from qgcomp.glm.noboot, qgcomp.glm.boot, qgcomp.zi.noboot,
or qgcomp.zi.bootfunctions

expnms character vector of exposures of interest

newdata (optional) new set of data with all predictors from "qgcompfit" object

type (from predict.glm) the type of prediction required. The default is on the scale
of the linear predictors; the alternative "response" is on the scale of the response
variable. Thus for a default binomial model the default predictions are of log-
odds (probabilities on logit scale) and type = "response" gives the predicted
probabilities. The "terms" option returns a matrix giving the fitted values of
each term in the model formula on the linear predictor scale.

... arguments to predict.glm
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Examples

set.seed(50)
dat <- data.frame(y=runif(50), x1=runif(50), x2=runif(50), z=runif(50))
obj1 <- qgcomp.glm.noboot(y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2)
obj2 <- qgcomp.glm.boot(y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2, B=10, seed=125)
set.seed(52)
dat2 <- data.frame(y=runif(50), x1=runif(50), x2=runif(50), z=runif(50))
summary(predict(obj1, expnms = c('x1', 'x2'), newdata=dat2))
summary(predict(obj2, expnms = c('x1', 'x2'), newdata=dat2))

print.qgcompfit Default printing method for a qgcompfit object

Description

Gives variable output depending on whether qgcomp.glm.noboot or qgcomp.glm.boot is called.
For qgcomp.glm.noboot will output final estimate of joint exposure effect (similar to the ’index’
effect in weighted quantile sums), as well as estimates of the ’weights’ (standardized coefficients).
For qgcomp.glm.boot, the marginal effect is given, but no weights are reported since this approach
generally incorporates non-linear models with interaction terms among exposures, which preclude
weights with any useful interpretation.

Usage

## S3 method for class 'qgcompfit'
print(x, showweights = TRUE, ...)

Arguments

x "qgcompfit" object from qgcomp, qgcomp.glm.noboot or qgcomp.glm.boot
function

showweights logical: should weights be printed, if estimated?

... unused

See Also

qgcomp.glm.noboot, qgcomp.glm.boot, and qgcomp

Examples

set.seed(50)
dat <- data.frame(y=runif(50), x1=runif(50), x2=runif(50), z=runif(50))
obj1 <- qgcomp.glm.noboot(y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2)
obj2 <- qgcomp.glm.boot(y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2, B=10, seed=125)
# does not need to be explicitly called, but included here for clarity
print(obj1)
print(obj2)
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qgcomp Quantile g-computation for continuous, binary, count, and censored
survival outcomes

Description

This function automatically selects between qgcomp.glm.noboot, qgcomp.glm.boot, qgcomp.cox.noboot,
and qgcomp.cox.boot for the most efficient approach to estimate the average expected change in the
(log) outcome per quantile increase in the joint exposure to all exposures in expnms', given the underlying model. For example, if the underlying model (specified by the formula f) is a linear model with all linear terms for exposure, then qg-
comp.glm.noboot“ will be called to fit the model. Non-linear terms or requesting the risk ratio for
binomial outcomes will result in the qgcomp.glm.boot function being called. For a given linear
model, boot and noboot versions will give identical inference, though when using survival out-
comes, the ‘boot‘ version uses simulation based inference, which can vary from the ‘noboot‘ ver-
sion due to simulation error (which can be minimized via setting the MCsize parameter very large
- see qgcomp.cox.boot for details).

Usage

qgcomp(f, data = data, family = gaussian(), rr = TRUE, ...)

Arguments

f R style formula (may include survival outcome via Surv)

data data frame

family gaussian(), binomial(), cox(), poisson() (works as argument to ’family’
parameter in glm‘ or ’dist’ parameter in zeroinfl)

rr logical: if using binary outcome and rr=TRUE, qgcomp.glm.boot will estimate
risk ratio rather than odds ratio. Note, to get population average effect estimates
for a binary outcome, set rr=TRUE (default: ORs are generally not of interest
as population average effects, so if rr=FALSE then a conditional OR will be
estimated, which cannot be interpreted as a population average effect

... arguments to qgcomp.glm.noboot or qgcomp.glm.boot (e.g. q) or glm

Value

a qgcompfit object, which contains information about the effect measure of interest (psi) and associ-
ated variance (var.psi), as well as information on the model fit (fit) and possibly information on the
marginal structural model (msmfit) used to estimate the final effect estimates (qgcomp.glm.boot,
qgcomp.cox.boot only). If appropriate, weights are also reported, which represent the proportion of
a directional (positive/negative) effect that is accounted for by each exposure.

See Also

qgcomp.glm.noboot, qgcomp.glm.boot, qgcomp.cox.noboot, qgcomp.cox.boot qgcomp.zi.noboot
and qgcomp.zi.boot (qgcomp is just a wrapper for these functions)
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Examples

set.seed(50)
dat <- data.frame(y=runif(50), x1=runif(50), x2=runif(50), z=runif(50))
qgcomp.glm.noboot(y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2)
qgcomp.glm.boot(y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2, B=10, seed=125)
# automatically selects appropriate method
qgcomp(y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2)
# note for binary outcome this will choose the risk ratio (and bootstrap methods) by default
dat <- data.frame(y=rbinom(100, 1, 0.5), x1=runif(100), x2=runif(100), z=runif(100))
## Not run:
qgcomp.glm.noboot(y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2, family=binomial())
set.seed(1231)
qgcomp.glm.boot(y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2, family=binomial())
set.seed(1231)
qgcomp(y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2, family=binomial())

# automatically selects appropriate method when specifying rr or degree explicitly
qgcomp(y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2, family=binomial(), rr=FALSE)
qgcomp(y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2, family=binomial(), rr=TRUE)
qgcomp(y ~ z + factor(x1) + factor(x2), degree=2, expnms = c('x1', 'x2'), data=dat, q=4,
family=binomial())

#survival objects
set.seed(50)
N=200
dat <- data.frame(time=(tmg <- pmin(.1,rweibull(N, 10, 0.1))),

d=1.0*(tmg<0.1), x1=runif(N), x2=runif(N), z=runif(N))
expnms=paste0("x", 1:2)
f = survival::Surv(time, d)~x1 + x2
qgcomp(f, expnms = expnms, data = dat)
# note if B or MCsize are set but the model is linear, an error will result
try(qgcomp(f, expnms = expnms, data = dat, B1=, MCsize))
# note that in the survival models, MCsize should be set to a large number
# such that results are repeatable (within an error tolerance such as 2 significant digits)
# if you run them under different seed values
f = survival::Surv(time, d)~x1 + x2 + x1:x2
qgcomp(f, expnms = expnms, data = dat, B=10, MCsize=100)

## End(Not run)

qgcomp.cch.noboot Quantile g-computation for survival outcomes in a case-cohort design
under linearity/additivity

Description

This function performs quantile g-computation in a survival setting. The approach estimates the
covariate-conditional hazard ratio for a joint change of 1 quantile in each exposure variable specified
in expnms parameter
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Usage

qgcomp.cch.noboot(
f,
data,
subcoh = NULL,
id = NULL,
cohort.size = NULL,
expnms = NULL,
q = 4,
breaks = NULL,
weights,
cluster = NULL,
alpha = 0.05,
...

)

Arguments

f R style survival formula, which includes Surv in the outcome definition. E.g.
Surv(time,event) ~ exposure. Offset terms can be included via Surv(time,event)
~ exposure + offset(z)

data data frame
subcoh (From cch help) Vector of indicators for subjects sampled as part of the sub-

cohort. Code 1 or TRUE for members of the sub-cohort, 0 or FALSE for others.
If data is a data frame then subcoh may be a one-sided formula.

id (From cch help) Vector of unique identifiers, or formula specifying such a vec-
tor.

cohort.size (From cch help) Vector with size of each stratum original cohort from which
subcohort was sampled

expnms character vector of exposures of interest
q NULL or number of quantiles used to create quantile indicator variables rep-

resenting the exposure variables. If NULL, then gcomp proceeds with un-
transformed version of exposures in the input datasets (useful if data are already
transformed, or for performing standard g-computation)

breaks (optional) NULL, or a list of (equal length) numeric vectors that characterize the
minimum value of each category for which to break up the variables named in
expnms. This is an alternative to using ’q’ to define cutpoints.

weights Not used here
cluster not yet implemented
alpha alpha level for confidence limit calculation
... arguments to glm (e.g. family)

Details

For survival outcomes (as specified using methods from the survival package), this yields a con-
ditional log hazard ratio representing a change in the expected conditional hazard (conditional on
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covariates) from increasing every exposure by 1 quantile. In general, this quantity quantity is not
equivalent to g-computation estimates. Hypothesis test statistics and 95% confidence intervals are
based on using the delta estimate variance of a linear combination of random variables.

Value

a qgcompfit object, which contains information about the effect measure of interest (psi) and as-
sociated variance (var.psi), as well as information on the model fit (fit) and information on the
weights/standardized coefficients in the positive (pos.weights) and negative (neg.weights) direc-
tions.

See Also

Other qgcomp_methods: qgcomp.cox.boot(), qgcomp.cox.noboot(), qgcomp.glm.boot(), qgcomp.glm.noboot(),
qgcomp.hurdle.boot(), qgcomp.hurdle.noboot(), qgcomp.multinomial.boot(), qgcomp.multinomial.noboot(),
qgcomp.partials(), qgcomp.zi.boot(), qgcomp.zi.noboot()

Examples

set.seed(50)
N=200
dat <- data.frame(time=(tmg <- pmin(.1,rweibull(N, 10, 0.1))),

d=1.0*(tmg<0.1), x1=runif(N), x2=runif(N), z=runif(N))
expnms=paste0("x", 1:2)
f = survival::Surv(time, d)~x1 + x2
(fit1 <- survival::coxph(f, data = dat))
(obj <- qgcomp.cox.noboot(f, expnms = expnms, data = dat))
## Not run:

# weighted analysis
dat$w = runif(N)
qdata = quantize(dat, expnms=expnms)
(obj2 <- qgcomp.cox.noboot(f, expnms = expnms, data = dat, weight=w))
obj2$fit
survival::coxph(f, data = qdata$data, weight=w)

# not run: bootstrapped version is much slower
(obj2 <- qgcomp.cox.boot(f, expnms = expnms, data = dat, B=200, MCsize=20000))

## End(Not run)

qgcomp.cox.boot Quantile g-computation for survival outcomes

Description

This function yields population average effect estimates for (possibly right censored) time-to event
outcomes
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Usage

qgcomp.cox.boot(
f,
data,
expnms = NULL,
q = 4,
breaks = NULL,
id = NULL,
weights,
cluster = NULL,
alpha = 0.05,
B = 200,
MCsize = 10000,
degree = 1,
seed = NULL,
parallel = FALSE,
parplan = FALSE,
...

)

Arguments

f R style survival formula, which includes Surv in the outcome definition. E.g.
Surv(time,event) ~ exposure. Offset terms can be included via Surv(time,event)
~ exposure + offset(z)

data data frame

expnms character vector of exposures of interest

q NULL or number of quantiles used to create quantile indicator variables rep-
resenting the exposure variables. If NULL, then gcomp proceeds with un-
transformed version of exposures in the input datasets (useful if data are already
transformed, or for performing standard g-computation)

breaks (optional) NULL, or a list of (equal length) numeric vectors that characterize the
minimum value of each category for which to break up the variables named in
expnms. This is an alternative to using ’q’ to define cutpoints.

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster). Note
that qgcomp.glm.noboot will not produce cluster-appropriate standard errors.
qgcomp.glm.boot can be used for this, which will use bootstrap sampling of
clusters/individuals to estimate cluster-appropriate standard errors via bootstrap-
ping.

weights "case weights" - passed to the "weight" argument of coxph

cluster not yet implemented

alpha alpha level for confidence limit calculation

B integer: number of bootstrap iterations (this should typically be >=200, though
it is set lower in examples to improve run-time).
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MCsize integer: sample size for simulation to approximate marginal hazards ratios (if <
sample size, then set to sample size). Note that large values will slow down the
fitting, but will result in higher accuracy - if you run the function multiple times
you will see that results vary due to simulation error. Ideally, MCsize would be
set such that simulation error is negligible in the precision reported (e.g. if you
report results to 2 decimal places, then MCsize should be set high enough that
you consistenty get answers that are the same to 2 decimal places).

degree polynomial bases for marginal model (e.g. degree = 2 allows that the relation-
ship between the whole exposure mixture and the outcome is quadratic.

seed integer or NULL: random number seed for replicable bootstrap results

parallel logical (default FALSE): use future package to speed up bootstrapping

parplan (logical, default=FALSE) automatically set future::plan to plan(multisession)
(and set to existing plan, if any, after bootstrapping)

... arguments to glm (e.g. family)

Details
qgcomp.cox.boot' estimates the log(hazard ratio) per quantile increase in the joint exposure to all exposures in ex-
pnms’. This function uses g-computation to estimate the parameters of a marginal structural model
for the population average effect of increasing all exposures in ‘expnms’ by a single quantile. This
approach involves specifying an underlying conditional outcome model, given all exposures of in-
terest (possibly with non-linear basis function representations such as splines or product terms) and
confounders or covariates of interest. This model is fit first, which is used to generate expected
outcomes at each quantile of all exposures, which is then used in a second model to estimate a
population average dose-response curve that is linear or follows a simple polynomial function. See
section on MCSize below

Test statistics and confidence intervals are based on a non-parametric bootstrap, using the standard
deviation of the bootstrap estimates to estimate the standard error. The bootstrap standard error
is then used to estimate Wald-type confidence intervals. Note that no bootstrapping is done on
estimated quantiles of exposure, so these are treated as fixed quantities

MCSize is crucial to get accurate point estimates. In order to get marginal estimates of the pop-
ulation hazard under different values of the joint exposure at a given quantile for all exposures in
expnms, qgcomp.cox.boot uses Monte Carlo simulation to generate outcomes implied by the un-
derlying conditional model and then fit a separate (marginal structural) model to those outcomes. In
order to get accurate results that don’t vary much from run-to-run of this approach, MCsize must be
set large enough so that results are stable across runs according to a pre-determined precision (e.g.
2 significant digits).

Value

a qgcompfit object, which contains information about the effect measure of interest (psi) and associ-
ated variance (var.psi), as well as information on the model fit (fit) and information on the marginal
structural model (msmfit) used to estimate the final effect estimates.

See Also

Other qgcomp_methods: qgcomp.cch.noboot(), qgcomp.cox.noboot(), qgcomp.glm.boot(),
qgcomp.glm.noboot(), qgcomp.hurdle.boot(), qgcomp.hurdle.noboot(), qgcomp.multinomial.boot(),
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qgcomp.multinomial.noboot(), qgcomp.partials(), qgcomp.zi.boot(), qgcomp.zi.noboot()

Examples

set.seed(50)
N=200
dat <- data.frame(time=(tmg <- pmin(.1,rweibull(N, 10, 0.1))),

d=1.0*(tmg<0.1), x1=runif(N), x2=runif(N), z=runif(N))
expnms=paste0("x", 1:2)
f = survival::Surv(time, d)~x1 + x2
(fit1 <- survival::coxph(f, data = dat))
(obj <- qgcomp.cox.noboot(f, expnms = expnms, data = dat))
## Not run:
# not run (slow when using boot version to proper precision)
(obj2 <- qgcomp.cox.boot(f, expnms = expnms, data = dat, B=10, MCsize=20000))

# weighted analysis

# using future package, marginalizing over confounder z
(obj3 <- qgcomp.cox.boot(survival::Surv(time, d)~x1 + x2 + z, expnms = expnms, data = dat,

B=1000, MCsize=20000, parallel=TRUE, parplan=TRUE))
# non-constant hazard ratio, non-linear terms
(obj4 <- qgcomp.cox.boot(survival::Surv(time, d)~factor(x1) + splines::bs(x2) + z,

expnms = expnms, data = dat,
B=1000, MCsize=20000, parallel=FALSE, degree=1))

# weighted analysis
dat$w = runif(N)
(objw1 <- qgcomp.cox.noboot(f, expnms = expnms, data = dat, weights=w))
(objw2 <- qgcomp.cox.boot(f, expnms = expnms, data = dat, weights=w, B=5, MCsize=20000))

## End(Not run)

qgcomp.cox.noboot Quantile g-computation for survival outcomes under linear-
ity/additivity

Description

This function performs quantile g-computation in a survival setting. The approach estimates the
covariate-conditional hazard ratio for a joint change of 1 quantile in each exposure variable specified
in expnms parameter

Usage

qgcomp.cox.noboot(
f,
data,
expnms = NULL,
q = 4,
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breaks = NULL,
id = NULL,
weights,
cluster = NULL,
alpha = 0.05,
...

)

Arguments

f R style survival formula, which includes Surv in the outcome definition. E.g.
Surv(time,event) ~ exposure. Offset terms can be included via Surv(time,event)
~ exposure + offset(z)

data data frame

expnms character vector of exposures of interest

q NULL or number of quantiles used to create quantile indicator variables rep-
resenting the exposure variables. If NULL, then gcomp proceeds with un-
transformed version of exposures in the input datasets (useful if data are already
transformed, or for performing standard g-computation)

breaks (optional) NULL, or a list of (equal length) numeric vectors that characterize the
minimum value of each category for which to break up the variables named in
expnms. This is an alternative to using ’q’ to define cutpoints.

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster)

weights "case weights" - passed to the "weight" argument of coxph

cluster not yet implemented

alpha alpha level for confidence limit calculation

... arguments to glm (e.g. family)

Details

For survival outcomes (as specified using methods from the survival package), this yields a con-
ditional log hazard ratio representing a change in the expected conditional hazard (conditional on
covariates) from increasing every exposure by 1 quantile. In general, this quantity quantity is not
equivalent to g-computation estimates. Hypothesis test statistics and 95% confidence intervals are
based on using the delta estimate variance of a linear combination of random variables.

Value

a qgcompfit object, which contains information about the effect measure of interest (psi) and as-
sociated variance (var.psi), as well as information on the model fit (fit) and information on the
weights/standardized coefficients in the positive (pos.weights) and negative (neg.weights) direc-
tions.
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See Also

qgcomp.cox.boot, qgcomp.glm.boot, and qgcomp

Other qgcomp_methods: qgcomp.cch.noboot(), qgcomp.cox.boot(), qgcomp.glm.boot(), qgcomp.glm.noboot(),
qgcomp.hurdle.boot(), qgcomp.hurdle.noboot(), qgcomp.multinomial.boot(), qgcomp.multinomial.noboot(),
qgcomp.partials(), qgcomp.zi.boot(), qgcomp.zi.noboot()

Examples

set.seed(50)
N=200
dat <- data.frame(time=(tmg <- pmin(.1,rweibull(N, 10, 0.1))),

d=1.0*(tmg<0.1), x1=runif(N), x2=runif(N), z=runif(N))
expnms=paste0("x", 1:2)
f = survival::Surv(time, d)~x1 + x2
(fit1 <- survival::coxph(f, data = dat))
(obj <- qgcomp.cox.noboot(f, expnms = expnms, data = dat))
## Not run:

# weighted analysis
dat$w = runif(N)
qdata = quantize(dat, expnms=expnms)
(obj2 <- qgcomp.cox.noboot(f, expnms = expnms, data = dat, weight=w))
obj2$fit
survival::coxph(f, data = qdata$data, weight=w)

# not run: bootstrapped version is much slower
(obj2 <- qgcomp.cox.boot(f, expnms = expnms, data = dat, B=200, MCsize=20000))

## End(Not run)

qgcomp.glm.boot Quantile g-computation for continuous and binary outcomes

Description

This function estimates a dose-response parameter representing a one quantile increase in a set of
exposures of interest. This model estimates the parameters of a marginal structural model (MSM)
based on g-computation with quantized exposures. Note: this function allows non-linear and non-
additive effects of individual components of the exposure, as well as non-linear joint effects of the
mixture via polynomial basis functions, which increase the computational computational burden
due to the need for non-parametric bootstrapping. qgcomp.boot is an equivalent function (slated for
deprecation)

Usage

qgcomp.glm.boot(
f,
data,
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expnms = NULL,
q = 4,
breaks = NULL,
id = NULL,
weights,
alpha = 0.05,
B = 200,
rr = TRUE,
degree = 1,
seed = NULL,
bayes = FALSE,
MCsize = nrow(data),
parallel = FALSE,
parplan = FALSE,
...

)

qgcomp.boot(
f,
data,
expnms = NULL,
q = 4,
breaks = NULL,
id = NULL,
weights,
alpha = 0.05,
B = 200,
rr = TRUE,
degree = 1,
seed = NULL,
bayes = FALSE,
MCsize = nrow(data),
parallel = FALSE,
parplan = FALSE,
...

)

Arguments

f R style formula

data data frame

expnms character vector of exposures of interest

q NULL or number of quantiles used to create quantile indicator variables rep-
resenting the exposure variables. If NULL, then gcomp proceeds with un-
transformed version of exposures in the input datasets (useful if data are already
transformed, or for performing standard g-computation)

breaks (optional) NULL, or a list of (equal length) numeric vectors that characterize the
minimum value of each category for which to break up the variables named in
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expnms. This is an alternative to using ’q’ to define cutpoints.

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster). Note
that qgcomp.glm.noboot will not produce cluster-appropriate standard errors.
qgcomp.glm.boot can be used for this, which will use bootstrap sampling of
clusters/individuals to estimate cluster-appropriate standard errors via bootstrap-
ping.

weights "case weights" - passed to the "weight" argument of glm or bayesglm

alpha alpha level for confidence limit calculation

B integer: number of bootstrap iterations (this should typically be >=200, though
it is set lower in examples to improve run-time).

rr logical: if using binary outcome and rr=TRUE, qgcomp.glm.boot will estimate
risk ratio rather than odds ratio

degree polynomial bases for marginal model (e.g. degree = 2 allows that the relation-
ship between the whole exposure mixture and the outcome is quadratic (default
= 1).

seed integer or NULL: random number seed for replicable bootstrap results

bayes use underlying Bayesian model (arm package defaults). Results in penalized
parameter estimation that can help with very highly correlated exposures. Note:
this does not lead to fully Bayesian inference in general, so results should be
interpreted as frequentist.

MCsize integer: sample size for simulation to approximate marginal zero inflated model
parameters. This can be left small for testing, but should be as large as needed
to reduce simulation error to an acceptable magnitude (can compare psi coeffi-
cients for linear fits with qgcomp.glm.noboot to gain some intuition for the level
of expected simulation error at a given value of MCsize). This likely won’t mat-
ter much in linear models, but may be important with binary or count outcomes.

parallel use (safe) parallel processing from the future and future.apply packages

parplan (logical, default=FALSE) automatically set future::plan to plan(multisession)
(and set to existing plan, if any, after bootstrapping)

... arguments to glm (e.g. family)

Details

Estimates correspond to the average expected change in the (log) outcome per quantile increase in
the joint exposure to all exposures in ‘expnms’. Test statistics and confidence intervals are based on
a non-parametric bootstrap, using the standard deviation of the bootstrap estimates to estimate the
standard error. The bootstrap standard error is then used to estimate Wald-type confidence intervals.
Note that no bootstrapping is done on estimated quantiles of exposure, so these are treated as fixed
quantities

Value

a qgcompfit object, which contains information about the effect measure of interest (psi) and associ-
ated variance (var.psi), as well as information on the model fit (fit) and information on the marginal
structural model (msmfit) used to estimate the final effect estimates.
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See Also

Other qgcomp_methods: qgcomp.cch.noboot(), qgcomp.cox.boot(), qgcomp.cox.noboot(),
qgcomp.glm.noboot(), qgcomp.hurdle.boot(), qgcomp.hurdle.noboot(), qgcomp.multinomial.boot(),
qgcomp.multinomial.noboot(), qgcomp.partials(), qgcomp.zi.boot(), qgcomp.zi.noboot()

Examples

set.seed(30)
# continuous outcome
dat <- data.frame(y=rnorm(100), x1=runif(100), x2=runif(100), z=runif(100))
# Conditional linear slope
qgcomp.glm.noboot(y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=4, family=gaussian())
# Marginal linear slope (population average slope, for a purely linear,
# additive model this will equal the conditional)
## Not run:

qgcomp.glm.boot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=4,
family=gaussian(), B=200) # B should be at least 200 in actual examples

# no intercept model
qgcomp.glm.boot(f=y ~ -1+z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=4,

family=gaussian(), B=200) # B should be at least 200 in actual examples

# Note that these give different answers! In the first, the estimate is conditional on Z,
# but in the second, Z is marginalized over via standardization. The estimates
# can be made approximately the same by centering Z (for linear models), but
# the conditional estimate will typically have lower standard errors.
dat$z = dat$z - mean(dat$z)

# Conditional linear slope
qgcomp.glm.noboot(y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=4, family=gaussian())
# Marginal linear slope (population average slope, for a purely linear,
# additive model this will equal the conditional)

qgcomp.glm.boot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=4,
family=gaussian(), B=200) # B should be at least 200 in actual examples

# Population average mixture slope which accounts for non-linearity and interactions
qgcomp.glm.boot(y ~ z + x1 + x2 + I(x1^2) + I(x2*x1), family="gaussian",
expnms = c('x1', 'x2'), data=dat, q=4, B=200)

# generally non-linear/non-addiive underlying models lead to non-linear mixture slopes
qgcomp.glm.boot(y ~ z + x1 + x2 + I(x1^2) + I(x2*x1), family="gaussian",
expnms = c('x1', 'x2'), data=dat, q=4, B=200, deg=2)

# binary outcome
dat <- data.frame(y=rbinom(50,1,0.5), x1=runif(50), x2=runif(50), z=runif(50))

# Conditional mixture OR
qgcomp.glm.noboot(y ~ z + x1 + x2, family="binomial", expnms = c('x1', 'x2'),

data=dat, q=2)

#Marginal mixture OR (population average OR - in general, this will not equal the
# conditional mixture OR due to non-collapsibility of the OR)
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qgcomp.glm.boot(y ~ z + x1 + x2, family="binomial", expnms = c('x1', 'x2'),
data=dat, q=2, B=3, rr=FALSE)

# Population average mixture RR
qgcomp.glm.boot(y ~ z + x1 + x2, family="binomial", expnms = c('x1', 'x2'),

data=dat, q=2, rr=TRUE, B=3)

# Population average mixture RR, indicator variable representation of x2
# note that I(x==...) operates on the quantile-based category of x,
# rather than the raw value
res = qgcomp.glm.boot(y ~ z + x1 + I(x2==1) + I(x2==2) + I(x2==3),

family="binomial", expnms = c('x1', 'x2'), data=dat, q=4, rr=TRUE, B=200)
res$fit
plot(res)

# now add in a non-linear MSM
res2 = qgcomp.glm.boot(y ~ z + x1 + I(x2==1) + I(x2==2) + I(x2==3),

family="binomial", expnms = c('x1', 'x2'), data=dat, q=4, rr=TRUE, B=200,
degree=2)

res2$fit
res2$msmfit # correct point estimates, incorrect standard errors
res2 # correct point estimates, correct standard errors
plot(res2)
# Log risk ratio per one IQR change in all exposures (not on quantile basis)
dat$x1iqr <- dat$x1/with(dat, diff(quantile(x1, c(.25, .75))))
dat$x2iqr <- dat$x2/with(dat, diff(quantile(x2, c(.25, .75))))
# note that I(x>...) now operates on the untransformed value of x,
# rather than the quantized value
res2 = qgcomp.glm.boot(y ~ z + x1iqr + I(x2iqr>0.1) + I(x2>0.4) + I(x2>0.9),

family="binomial", expnms = c('x1iqr', 'x2iqr'), data=dat, q=NULL, rr=TRUE, B=200,
degree=2)

res2
# using parallel processing

qgcomp.glm.boot(y ~ z + x1iqr + I(x2iqr>0.1) + I(x2>0.4) + I(x2>0.9),
family="binomial", expnms = c('x1iqr', 'x2iqr'), data=dat, q=NULL, rr=TRUE, B=200,
degree=2, parallel=TRUE, parplan=TRUE)

# weighted model
N=5000
dat4 <- data.frame(id=seq_len(N), x1=runif(N), x2=runif(N), z=runif(N))
dat4$y <- with(dat4, rnorm(N, x1*z + z, 1))
dat4$w=runif(N) + dat4$z*5
qdata = quantize(dat4, expnms = c("x1", "x2"), q=4)$data
# first equivalent models with no covariates
qgcomp.glm.noboot(f=y ~ x1 + x2, expnms = c('x1', 'x2'), data=dat4, q=4, family=gaussian())
qgcomp.glm.noboot(f=y ~ x1 + x2, expnms = c('x1', 'x2'), data=dat4, q=4, family=gaussian(),

weights=w)

set.seed(13)
qgcomp.glm.boot(f=y ~ x1 + x2, expnms = c('x1', 'x2'), data=dat4, q=4, family=gaussian(),

weights=w)
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# using the correct model
set.seed(13)
qgcomp.glm.boot(f=y ~ x1*z + x2, expnms = c('x1', 'x2'), data=dat4, q=4, family=gaussian(),

weights=w, id="id")
(qgcfit <- qgcomp.glm.boot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat4, q=4,

family=gaussian(), weights=w))
qgcfit$fit
summary(glm(y ~ z + x1 + x2, data = qdata, weights=w))

## End(Not run)

qgcomp.glm.noboot Quantile g-computation for continuous, binary, and count outcomes
under linearity/additivity

Description

This function estimates a linear dose-response parameter representing a one quantile increase in
a set of exposures of interest. This function is limited to linear and additive effects of individual
components of the exposure. This model estimates the parameters of a marginal structural model
(MSM) based on g-computation with quantized exposures. Note: this function is valid only under
linear and additive effects of individual components of the exposure, but when these hold the model
can be fit with very little computational burden. qgcomp.noboot is an equivalent function (slated
for deprecation)

Usage

qgcomp.glm.noboot(
f,
data,
expnms = NULL,
q = 4,
breaks = NULL,
id = NULL,
weights,
alpha = 0.05,
bayes = FALSE,
...

)

qgcomp.noboot(
f,
data,
expnms = NULL,
q = 4,
breaks = NULL,
id = NULL,
weights,
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alpha = 0.05,
bayes = FALSE,
...

)

Arguments

f R style formula

data data frame

expnms character vector of exposures of interest

q NULL or number of quantiles used to create quantile indicator variables rep-
resenting the exposure variables. If NULL, then gcomp proceeds with un-
transformed version of exposures in the input datasets (useful if data are already
transformed, or for performing standard g-computation)

breaks (optional) NULL, or a list of (equal length) numeric vectors that characterize the
minimum value of each category for which to break up the variables named in
expnms. This is an alternative to using ’q’ to define cutpoints.

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster). Note
that qgcomp.glm.noboot will not produce cluster-appropriate standard errors
(this parameter is essentially ignored in qgcomp.glm.noboot). qgcomp.glm.boot
can be used for this, which will use bootstrap sampling of clusters/individuals
to estimate cluster-appropriate standard errors via bootstrapping.

weights "case weights" - passed to the "weight" argument of glm or bayesglm

alpha alpha level for confidence limit calculation

bayes use underlying Bayesian model (arm package defaults). Results in penalized
parameter estimation that can help with very highly correlated exposures. Note:
this does not lead to fully Bayesian inference in general, so results should be
interpreted as frequentist.

... arguments to glm (e.g. family)

Details

For continuous outcomes, under a linear model with no interaction terms, this is equivalent to g-
computation of the effect of increasing every exposure by 1 quantile. For binary/count outcomes
outcomes, this yields a conditional log odds/rate ratio(s) representing the change in the expected
conditional odds/rate (conditional on covariates) from increasing every exposure by 1 quantile. In
general, the latter quantity is not equivalent to g-computation estimates. Hypothesis test statistics
and confidence intervals are based on using the delta estimate variance of a linear combination of
random variables.

Value

a qgcompfit object, which contains information about the effect measure of interest (psi) and as-
sociated variance (var.psi), as well as information on the model fit (fit) and information on the
weights/standardized coefficients in the positive (pos.weights) and negative (neg.weights) direc-
tions.
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See Also

Other qgcomp_methods: qgcomp.cch.noboot(), qgcomp.cox.boot(), qgcomp.cox.noboot(),
qgcomp.glm.boot(), qgcomp.hurdle.boot(), qgcomp.hurdle.noboot(), qgcomp.multinomial.boot(),
qgcomp.multinomial.noboot(), qgcomp.partials(), qgcomp.zi.boot(), qgcomp.zi.noboot()

Examples

set.seed(50)
# linear model
dat <- data.frame(y=runif(50,-1,1), x1=runif(50), x2=runif(50), z=runif(50))
qgcomp.glm.noboot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2, family=gaussian())
# not intercept model
qgcomp.glm.noboot(f=y ~-1+ z + x1 + x2, expnms = c('x1', 'x2'), data=dat, q=2, family=gaussian())
# logistic model
dat2 <- data.frame(y=rbinom(50, 1,0.5), x1=runif(50), x2=runif(50), z=runif(50))
qgcomp.glm.noboot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat2, q=2, family=binomial())
# poisson model
dat3 <- data.frame(y=rpois(50, .5), x1=runif(50), x2=runif(50), z=runif(50))
qgcomp.glm.noboot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat3, q=2, family=poisson())
# weighted model
N=5000
dat4 <- data.frame(y=runif(N), x1=runif(N), x2=runif(N), z=runif(N))
dat4$w=runif(N)*2
qdata = quantize(dat4, expnms = c("x1", "x2"))$data
(qgcfit <- qgcomp.glm.noboot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'), data=dat4, q=4,

family=gaussian(), weights=w))
qgcfit$fit
glm(y ~ z + x1 + x2, data = qdata, weights=w)

qgcomp.hurdle.boot Quantile g-computation for hurdle count outcomes

Description

This function estimates a linear dose-response parameter representing a one quantile increase in
a set of exposures of interest for hurdle count outcomes. This function is limited to linear and
additive effects of individual components of the exposure. This model estimates the parameters of a
marginal structural hurdle count model (MSM) based on g-computation with quantized exposures.
Note: this function allows linear and non-additive effects of individual components of the exposure,
as well as non-linear joint effects of the mixture via polynomial basis functions, which increase the
computational computational burden due to the need for non-parametric bootstrapping.

Usage

qgcomp.hurdle.boot(
f,
data,
expnms = NULL,
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q = 4,
breaks = NULL,
id = NULL,
weights,
alpha = 0.05,
B = 200,
degree = 1,
seed = NULL,
bayes = FALSE,
parallel = FALSE,
MCsize = 10000,
msmcontrol = hurdlemsm_fit.control(),
parplan = FALSE,
...

)

Arguments

f R style formula

data data frame

expnms character vector of exposures of interest

q NULL or number of quantiles used to create quantile indicator variables rep-
resenting the exposure variables. If NULL, then gcomp proceeds with un-
transformed version of exposures in the input datasets (useful if data are already
transformed, or for performing standard g-computation)

breaks (optional) NULL, or a list of (equal length) numeric vectors that characterize the
minimum value of each category for which to break up the variables named in
expnms. This is an alternative to using ’q’ to define cutpoints.

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster)

weights "case weights" - passed to the "weight" argument of hurdle. NOTE - this does
not work with parallel=TRUE!

alpha alpha level for confidence limit calculation

B integer: number of bootstrap iterations (this should typically be >=200, though
it is set lower in examples to improve run-time).

degree polynomial basis function for marginal model (e.g. degree = 2 allows that the
relationship between the whole exposure mixture and the outcome is quadratic.

seed integer or NULL: random number seed for replicable bootstrap results

bayes not currently implemented.

parallel use (safe) parallel processing from the future and future.apply packages

MCsize integer: sample size for simulation to approximate marginal zero inflated model
parameters. This can be left small for testing, but should be as large as needed
to reduce simulation error to an acceptable magnitude (can compare psi coeffi-
cients for linear fits with qgcomp.hurdle.noboot to gain some intuition for the
level of expected simulation error at a given value of MCsize)
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msmcontrol named list from hurdlemsm_fit.control

parplan (logical, default=FALSE) automatically set future::plan to plan(multisession)
(and set to existing plan, if any, after bootstrapping)

... arguments to glm (e.g. family)

Details

Hurdle count models allow excess zeros in standard count outcome (e.g. Poisson distributed out-
comes). Such models have two components: 1) the probability of arising from a degenerate dis-
tribution at zero (versus arising from a count distribution) and 2) the rate parameter of a (possibly
truncated > 0) count distribution. Thus, one has the option of allowing exposure and covariate
effects on the zero distribution, the count distribution, or both. The zero distribution parameters
correspond to log-odds ratios for the probability of arising from the zero distribution. Count distri-
bution parameters correspond to log-rate-ratio parameters. Test statistics and confidence intervals
are based on a non-parametric bootstrap, using the standard deviation of the bootstrap estimates to
estimate the standard error. The bootstrap standard error is then used to estimate Wald-type confi-
dence intervals. Note that no bootstrapping is done on estimated quantiles of exposure, so these are
treated as fixed quantities.

Of note, this function yields marginal estimates of the expected outcome under values of the joint
exposure quantiles (e.g. the expected outcome if all exposures are below the 1st quartile). These
outcomes can be used to derive estimates of the effect on the marginal expectation of the outcome,
irrespective of zero/count portions of the statistical model.

Estimates correspond to the average expected change in the (log) outcome per quantile increase in
the joint exposure to all exposures in ‘expnms’. Test statistics and confidence intervals are based on
a non-parametric bootstrap, using the standard deviation of the bootstrap estimates to estimate the
standard error. The bootstrap standard error is then used to estimate Wald-type confidence intervals.
Note that no bootstrapping is done on estimated quantiles of exposure, so these are treated as fixed
quantities

Value

a qgcompfit object, which contains information about the effect measure of interest (psi) and associ-
ated variance (var.psi), as well as information on the model fit (fit) and information on the marginal
structural model (msmfit) used to estimate the final effect estimates.

See Also

Other qgcomp_methods: qgcomp.cch.noboot(), qgcomp.cox.boot(), qgcomp.cox.noboot(),
qgcomp.glm.boot(), qgcomp.glm.noboot(), qgcomp.hurdle.noboot(), qgcomp.multinomial.boot(),
qgcomp.multinomial.noboot(), qgcomp.partials(), qgcomp.zi.boot(), qgcomp.zi.noboot()

Examples

set.seed(50)
n=500
dat <- data.frame(y=rbinom(n, 1, 0.5)*rpois(n, 1.2), x1=runif(n), x2=runif(n), z=runif(n))
# poisson count model, mixture in both portions
## Not run:
# warning: the examples below can take a long time to run
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res = qgcomp.hurdle.boot(f=y ~ x1 + x2 | x1 + x2, expnms = c('x1', 'x2'),
data=dat, q=4, dist="poisson", B=1000, MCsize=10000, parallel=TRUE, parplan=TRUE)

qgcomp.hurdle.noboot(f=y ~ x1 + x2 | x1 + x2, expnms = c('x1', 'x2'),
data=dat, q=4, dist="poisson")

res

# accuracy for small MCsize is suspect (compare coefficients between boot/noboot versions),
# so re-check with MCsize set to larger value (this takes a long time to run)
res2 = qgcomp.hurdle.boot(f=y ~ x1 + x2 | x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=4, dist="poisson", B=1000, MCsize=50000, parallel=TRUE, parplan=TRUE)
res2

plot(density(res2$bootsamps[4,]))

# negative binomial count model, mixture and covariate in both portions
qgcomp.hurdle.boot(f=y ~ z + x1 + x2 | z + x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=4, dist="negbin", B=10, MCsize=10000)

# weighted analysis (NOTE THIS DOES NOT WORK WITH parallel=TRUE!)
dat$w = runif(n)*5
qgcomp.hurdle.noboot(f=y ~ z + x1 + x2 | x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=4, dist="poisson", weights=w)
# You may see this:
# Warning message:
# In eval(family$initialize) : non-integer #successes in a binomial glm!
qgcomp.hurdle.boot(f=y ~ x1 + x2 | x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=4, dist="poisson", B=5, MCsize=50000, parallel=FALSE, weights=w)
# Log rr per one IQR change in all exposures (not on quantile basis)
dat$x1iqr <- dat$x1/with(dat, diff(quantile(x1, c(.25, .75))))
dat$x2iqr <- dat$x2/with(dat, diff(quantile(x2, c(.25, .75))))
# note that I(x>...) now operates on the untransformed value of x,
# rather than the quantized value
res2 = qgcomp.hurdle.boot(f=y ~ z + x1iqr + x2iqr + I(x2iqr>0.1) +

I(x2iqr>0.4) + I(x2iqr>0.9) | x1iqr + x2iqr,
expnms = c('x1iqr', 'x2iqr'),
data=dat, q=NULL, B=2, degree=2, MCsize=2000, dist="poisson")

res2

## End(Not run)

qgcomp.hurdle.noboot Quantile g-computation for hurdle count outcomes under linear-
ity/additivity

Description

This function estimates a linear dose-response parameter representing a one quantile increase in
a set of exposures of interest for hurdle count outcomes. This function is limited to linear and
additive effects of individual components of the exposure. This model estimates the parameters
of a marginal structural hurdle model (MSM) based on g-computation with quantized exposures.
Note: this function is valid only under linear and additive effects of individual components of the
exposure, but when these hold the model can be fit with very little computational burden.
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Usage

qgcomp.hurdle.noboot(
f,
data,
expnms = NULL,
q = 4,
breaks = NULL,
id = NULL,
weights,
alpha = 0.05,
bayes = FALSE,
...

)

Arguments

f R style formula using syntax from ’pscl’ package: depvar ~ indvars_count |
indvars_zero

data data frame

expnms character vector of exposures of interest

q NULL or number of quantiles used to create quantile indicator variables rep-
resenting the exposure variables. If NULL, then gcomp proceeds with un-
transformed version of exposures in the input datasets (useful if data are already
transformed, or for performing standard g-computation)

breaks (optional) NULL, or a list of (equal length) numeric vectors that characterize the
minimum value of each category for which to break up the variables named in
expnms. This is an alternative to using ’q’ to define cutpoints.

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster)

weights "case weights" - passed to the "weight" argument of hurdle.

alpha alpha level for confidence limit calculation

bayes not yet implemented

... arguments to hurdle (e.g. dist)

Details

A hurdle version of quantile g-computation based on the implementation in the ’pscl’ package. A
hurdle distribution is a mixture distribution in which one of the distributions is a point mass at zero
(with probability given by a logistic model), and the other distribution is a discrete or continuous
distribution. This estimates the effect of a joint increase in all exposures on 1) the odds of belonging
to the "zero" vs. "count" portions of the distribution and/or 2) the rate parameter for the "count"
portion of the distribution.
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Value

a qgcompfit object, which contains information about the effect measure of interest (psi) and as-
sociated variance (var.psi), as well as information on the model fit (fit) and information on the
weights/standardized coefficients in the positive (pos.weights) and negative (neg.weights) direc-
tions.

See Also

qgcomp.hurdle.boot,qgcomp.glm.noboot, qgcomp.cox.noboot, and hurdle

Other qgcomp_methods: qgcomp.cch.noboot(), qgcomp.cox.boot(), qgcomp.cox.noboot(),
qgcomp.glm.boot(), qgcomp.glm.noboot(), qgcomp.hurdle.boot(), qgcomp.multinomial.boot(),
qgcomp.multinomial.noboot(), qgcomp.partials(), qgcomp.zi.boot(), qgcomp.zi.noboot()

Examples

set.seed(50)
n=100
dat <- data.frame(y=rbinom(n, 1, 0.5)*rpois(n, 1.2), x1=runif(n), x2=runif(n), z=runif(n))

# poisson count model, mixture in both portions
qgcomp.hurdle.noboot(f=y ~ z + x1 + x2 | x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=2, dist="poisson")

# negative binomial count model, mixture and covariate in both portions
qgcomp.hurdle.noboot(f=y ~ z + x1 + x2 | z + x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=2, dist="negbin")
qgcomp.hurdle.noboot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=2, dist="negbin") # equivalent

# negative binomial count model, mixture only in the 'count' portion of the model
qgcomp.hurdle.noboot(f=y ~ z + x1 + x2 | z, expnms = c('x1', 'x2'), data=dat, q=2, dist="negbin")

# weighted analysis
dat$w = runif(n)*5
qgcomp.hurdle.noboot(f=y ~ z + x1 + x2 | x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=2, dist="poisson", weights=w)
# Expect this:
# Warning message:
# In eval(family$initialize) : non-integer #successes in a binomial glm!

qgcomp.multinomial.boot

Quantile g-computation for multinomial outcomes
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Description

This function estimates a dose-response parameter representing a one quantile increase in a set of
exposures of interest. This model estimates the parameters of a marginal structural model (MSM)
based on g-computation with quantized exposures. Note: this function allows linear and non-
additive effects of individual components of the exposure, as well as non-linear joint effects of the
mixture via polynomial basis functions, which increase the computational computational burden
due to the need for non-parametric bootstrapping.

Usage

qgcomp.multinomial.boot(
f,
data,
expnms = NULL,
q = 4,
breaks = NULL,
id = NULL,
weights,
alpha = 0.05,
B = 200,
rr = TRUE,
degree = 1,
seed = NULL,
bayes = FALSE,
MCsize = nrow(data),
parallel = FALSE,
parplan = FALSE,
...

)

Arguments

f R style formula

data data frame

expnms character vector of exposures of interest

q NULL or number of quantiles used to create quantile indicator variables rep-
resenting the exposure variables. If NULL, then gcomp proceeds with un-
transformed version of exposures in the input datasets (useful if data are already
transformed, or for performing standard g-computation)

breaks (optional) NULL, or a list of (equal length) numeric vectors that characterize the
minimum value of each category for which to break up the variables named in
expnms. This is an alternative to using ’q’ to define cutpoints.

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster). Note
that qgcomp.glm.noboot will not produce cluster-appropriate standard errors.
qgcomp.glm.boot can be used for this, which will use bootstrap sampling of
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clusters/individuals to estimate cluster-appropriate standard errors via bootstrap-
ping.

weights "case weights" - passed to the "weight" argument of glm or bayesglm
alpha alpha level for confidence limit calculation
B integer: number of bootstrap iterations (this should typically be >=200, though

it is set lower in examples to improve run-time).
rr logical: if using binary outcome and rr=TRUE, qgcomp.glm.boot will estimate

risk ratio rather than odds ratio
degree polynomial bases for marginal model (e.g. degree = 2 allows that the relation-

ship between the whole exposure mixture and the outcome is quadratic (default
= 1).

seed integer or NULL: random number seed for replicable bootstrap results
bayes use underlying Bayesian model (arm package defaults). Results in penalized

parameter estimation that can help with very highly correlated exposures. Note:
this does not lead to fully Bayesian inference in general, so results should be
interpreted as frequentist.

MCsize integer: sample size for simulation to approximate marginal zero inflated model
parameters. This can be left small for testing, but should be as large as needed
to reduce simulation error to an acceptable magnitude (can compare psi coeffi-
cients for linear fits with qgcomp.glm.noboot to gain some intuition for the level
of expected simulation error at a given value of MCsize). This likely won’t mat-
ter much in linear models, but may be important with binary or count outcomes.

parallel use (safe) parallel processing from the future and future.apply packages
parplan (logical, default=FALSE) automatically set future::plan to plan(multisession)

(and set to existing plan, if any, after bootstrapping)
... arguments to glm (e.g. family)

Details

Estimates correspond to the average expected change in the probability of an outcome type per
quantile increase in the joint exposure to all exposures in ‘expnms’. Test statistics and confidence
intervals are based on a non-parametric bootstrap, using the standard deviation of the bootstrap
estimates to estimate the standard error. The bootstrap standard error is then used to estimate Wald-
type confidence intervals. Note that no bootstrapping is done on estimated quantiles of exposure,
so these are treated as fixed quantities

Value

a qgcompfit object, which contains information about the effect measure of interest (psi) and associ-
ated variance (var.psi), as well as information on the model fit (fit) and information on the marginal
structural model (msmfit) used to estimate the final effect estimates.

See Also

Other qgcomp_methods: qgcomp.cch.noboot(), qgcomp.cox.boot(), qgcomp.cox.noboot(),
qgcomp.glm.boot(), qgcomp.glm.noboot(), qgcomp.hurdle.boot(), qgcomp.hurdle.noboot(),
qgcomp.multinomial.noboot(), qgcomp.partials(), qgcomp.zi.boot(), qgcomp.zi.noboot()
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Examples

data("metals") # from qgcomp package
# create categorical outcome from the existing continuous outcome (usually, one will already exist)
metals$ycat = factor(quantize(metals, "y",q=4)$data$y, levels=c("0", "1", "2", "3"),

labels=c("cct", "ccg", "aat", "aag"))
# restrict to smaller dataset for simplicity
smallmetals = metals[,c("ycat", "arsenic", "lead", "cadmium", "mage35")]

### 1: Define mixture and underlying model ####
mixture = c("arsenic", "lead", "cadmium")
f0 = ycat ~ arsenic + lead + cadmium # the multinomial model
# (be sure that factor variables are properly coded ahead of time in the dataset)
rr = qgcomp.multinomial.boot(
f0,
expnms = mixture,
q=4,
data = smallmetals,
B = 5, # set to higher values in real examples
MCsize = 100, # set to higher values in small samples
)

rr2 = qgcomp.multinomial.noboot(
f0,
expnms = mixture,
q=4,
data = smallmetals
)

### 5: Create summary qgcomp object for nice printing ####

summary(rr, tests=c("H")) # include homogeneity test

# 95% confidence intervals
#confint(rr, level=0.95)
#rr$breaks # quantile cutpoints for exposures
# homogeneity_test(rr)
#joint_test(rr)

qdat = simdata_quantized(
outcometype="multinomial",
n=10000, corr=c(-.9), coef=cbind(c(.2,-.2,0,0), c(.1,.1,.1,.1)),
q = 4

)

rr_sim = qgcomp.multinomial.noboot(
y~x1+x2+x3+x4,
expnms = c("x1", "x2", "x3", "x4"),
q=4,
data = qdat
)

rr_sim2 = qgcomp.multinomial.boot(
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y~x1+x2+x3+x4,
expnms = c("x1", "x2", "x3", "x4"),
q=4,
data = qdat,
B=1
)

qgcomp.multinomial.noboot

Quantile g-computation for multinomial outcomes

Description

Quantile g-computation for multinomial outcomes

Usage

qgcomp.multinomial.noboot(
f,
data,
expnms = NULL,
q = 4,
breaks = NULL,
id = NULL,
weights,
alpha = 0.05,
bayes = FALSE,
...

)

Arguments

f R style formula

data data frame

expnms character vector of exposures of interest

q NULL or number of quantiles used to create quantile indicator variables rep-
resenting the exposure variables. If NULL, then gcomp proceeds with un-
transformed version of exposures in the input datasets (useful if data are already
transformed, or for performing standard g-computation)

breaks (optional) NULL, or a list of (equal length) numeric vectors that characterize the
minimum value of each category for which to break up the variables named in
expnms. This is an alternative to using ’q’ to define cutpoints.

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster). Note
that qgcomp.glm.noboot will not produce cluster-appropriate standard errors
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(this parameter is essentially ignored in qgcomp.glm.noboot). qgcomp.glm.boot
can be used for this, which will use bootstrap sampling of clusters/individuals
to estimate cluster-appropriate standard errors via bootstrapping.

weights "case weights" - passed to the "weight" argument of multinom

alpha alpha level for confidence limit calculation

bayes Logical, Not yet implemented (gives and error if set to TRUE)

... arguments to nnet::multinom

Value

a qgcompmultfit object, which contains information about the effect measure of interest (psi) and
associated variance (var.psi), as well as information on the model fit (fit) and information on the
weights/standardized coefficients in the positive and negative directions (weights).

See Also

qgcomp.glm.noboot, multinom

Other qgcomp_methods: qgcomp.cch.noboot(), qgcomp.cox.boot(), qgcomp.cox.noboot(),
qgcomp.glm.boot(), qgcomp.glm.noboot(), qgcomp.hurdle.boot(), qgcomp.hurdle.noboot(),
qgcomp.multinomial.boot(), qgcomp.partials(), qgcomp.zi.boot(), qgcomp.zi.noboot()

Examples

data("metals") # from qgcomp package
# create categorical outcome from the existing continuous outcome (usually, one will already exist)
metals$ycat = factor(quantize(metals, "y",q=4)$data$y, levels=c("0", "1", "2", "3"),

labels=c("cct", "ccg", "aat", "aag"))
# restrict to smaller dataset for simplicity
smallmetals = metals[,c("ycat", "arsenic", "lead", "cadmium", "mage35")]

### 1: Define mixture and underlying model ####
mixture = c("arsenic", "lead", "cadmium")
f0 = ycat ~ arsenic + lead + cadmium # the multinomial model
# (be sure that factor variables are properly coded ahead of time in the dataset)

rr = qgcomp.multinomial.noboot(
f0,
expnms = mixture,
q=4,
data = smallmetals,
)

### 5: Create summary qgcomp object for nice printing ####

summary(rr, tests=c("H")) # include homogeneity test

# 95% confidence intervals
confint(rr, level=0.95)
rr$breaks # quantile cutpoints for exposures
# homogeneity_test(rr)
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joint_test(rr)

qgcomp.partials Partial effect sizes, confidence intervals, hypothesis tests

Description

Obtain effect estimates for "partial positive" and "partial negative" effects using quantile g-computation.
This approach uses sample splitting to evaluate the overall impact of a set of variables with effects
in a single direction, where, using training data, all variables with effects in the same direction are
grouped.

Usage

qgcomp.partials(
fun = c("qgcomp.glm.noboot", "qgcomp.cox.noboot", "qgcomp.zi.noboot"),
traindata = NULL,
validdata = NULL,
expnms = NULL,
.fixbreaks = TRUE,
.globalbreaks = FALSE,
...

)

Arguments

fun character variable in the set "qgcomp.glm.noboot" (binary, count, continuous
outcomes), "qgcomp.cox.noboot" (survival outcomes), "qgcomp.zi.noboot" (zero
inflated outcomes). This describes which qgcomp package function is used to
fit the model. (default = "qgcomp.glm.noboot")

traindata Data frame with training data

validdata Data frame with validation data

expnms Exposure mixture of interest

.fixbreaks (logical, overridden by .globalbreaks) Use the same quantile cutpoints in the
training and validation data (selected in the training data). As of version 2.8.11,
the default is TRUE, whereas it was implicitly FALSE in prior verions. Setting
to TRUE increases variance but greatly decreases bias in smaller samples.

.globalbreaks (logical, if TRUE, overrides .fixbreaks) Use the same quantile cutpoints in the
training and validation data (selected in combined training and validation data).
As of version 2.8.11, the default is TRUE, whereas it was implicitly FALSE in
prior verions. Setting to TRUE increases variance but greatly decreases bias in
smaller samples.

... Arguments to qgcomp.glm.noboot, qgcomp.cox.noboot, or qgcomp.zi.noboot
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Details

In the basic (non bootstrapped) qgcomp functions, the positive and negative "sums of coefficients"
or "partial effect sizes" are given, which equal the sum of the negative and positive coefficients in
the underlying model. Unfortunately, these partial effects don’t constitute variables for which we
can derive confidence intervals or hypothesis tests, so they are mainly for exploratory purposes. By
employing sample splitting, however, we can obtain better estimates of these partial effects.

Sample splitting proceeds by partitioning the data into two samples (40/60 training/validtion split
seems acceptable in many circumstances). The "overall mixture effect" is then estimated in the
training data, and the mixture variables with positive and negative coefficients are split into separate
groups. These two different groups are then used as "the mixture of interest" in two additional
qgcomp fits, where the mixture of interest is adjusted for the other exposure variables. For example,
if the "positive partial effect" is of interest, then this effect is equal to the sum of the coefficients in
the qgcomp model fit to the validation data, with the mixture of interest selected by the original fit
to the training data (note that some of these coefficients may be negative in the fit to the validation
data - this is expected and necessary for valid hypothesis tests).

The positive/negative partial effects are necessarily exploratory, but sample splitting preserves the
statistical properties at the expense of wider confidence intervals and larger variances. The two
resulting mixture groups groups should be inspected for

Value

A ’qgcompmultifit’ object, which inherits from list, which contains

posmix character vector of variable names with positive coefficients in the qgcomp model fit to the
training data

negmix character vector of variable names with negative coefficients in the qgcomp model fit to
the training data

pos.fit a qgcompfit object fit to the validation data, in which the exposures of interest are contained
in ’posmix’

neg.fit a qgcompfit object fit to the validation data, in which the exposures of interest are contained
in ’negmix’

See Also

Other qgcomp_methods: qgcomp.cch.noboot(), qgcomp.cox.boot(), qgcomp.cox.noboot(),
qgcomp.glm.boot(), qgcomp.glm.noboot(), qgcomp.hurdle.boot(), qgcomp.hurdle.noboot(),
qgcomp.multinomial.boot(), qgcomp.multinomial.noboot(), qgcomp.zi.boot(), qgcomp.zi.noboot()

Examples

set.seed(123223)
dat = qgcomp::simdata_quantized(n=1000, outcomtype="continuous", cor=c(.75, 0),

b0=0, coef=c(0.25,-0.25,0,0), q=4)
cor(dat)
# overall fit (more or less null due to counteracting exposures)
(overall <- qgcomp.glm.noboot(f=y~., q=NULL, expnms=c("x1", "x2", "x3", "x4"), data=dat))

# partial effects using 40% training/60% validation split
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trainidx <- sample(1:nrow(dat), round(nrow(dat)*0.4))
valididx <- setdiff(1:nrow(dat),trainidx)
traindata = dat[trainidx,]
validdata = dat[valididx,]
splitres <- qgcomp.partials(fun="qgcomp.glm.noboot", f=y~., q=NULL,

traindata=traindata,validdata=validdata, expnms=c("x1", "x2", "x3", "x4"))
splitres
## Not run:
# under the null, both should give null results
set.seed(123223)
dat = simdata_quantized(n=1000, outcomtype="continuous", cor=c(.75, 0),

b0=0, coef=c(0,0,0,0), q=4)
# 40% training/60% validation
trainidx2 <- sample(1:nrow(dat), round(nrow(dat)*0.4))
valididx2 <- setdiff(1:nrow(dat),trainidx2)
traindata2 <- dat[trainidx2,]
validdata2 <- dat[valididx2,]
splitres2 <- qgcomp.partials(fun="qgcomp.glm.noboot", f=y~.,

q=NULL, traindata=traindata2,validdata=validdata2, expnms=c("x1", "x2", "x3", "x4"))
splitres2

# 60% training/40% validation
trainidx3 <- sample(1:nrow(dat), round(nrow(dat)*0.6))
valididx3 <- setdiff(1:nrow(dat),trainidx3)
traindata3 <- dat[trainidx3,]
validdata3 <- dat[valididx3,]
splitres3 <- qgcomp.partials(fun="qgcomp.glm.noboot", f=y~., q=NULL,

traindata=traindata3,validdata=validdata3, expnms=c("x1", "x2", "x3", "x4"))
splitres3

# survival outcome
set.seed(50)
N=1000
dat = simdata_quantized(n=1000, outcomtype="survival", cor=c(.75, 0, 0, 0, 1),

b0=0, coef=c(1,0,0,0,0,1), q=4)
names(dat)[which(names(dat=="x5"))] = "z"
trainidx4 <- sample(1:nrow(dat), round(nrow(dat)*0.6))
valididx4 <- setdiff(1:nrow(dat),trainidx4)
traindata4 <- dat[trainidx4,]
validdata4 <- dat[valididx4,]
expnms=paste0("x", 1:5)
f = survival::Surv(time, d)~x1 + x2 + x3 + x4 + x5 + z
(fit1 <- survival::coxph(f, data = dat))
(overall <- qgcomp.cox.noboot(f, expnms = expnms, data = dat))
(splitres4 <- qgcomp.partials(fun="qgcomp.cox.noboot", f=f, q=4,

traindata=traindata4,validdata=validdata4,
expnms=expnms))

# zero inflated count outcome
set.seed(50)
n=1000
dat <- data.frame(y= (yany <- rbinom(n, 1, 0.5))*(ycnt <- rpois(n, 1.2)), x1=runif(n)+ycnt*0.2,

x2=runif(n)-ycnt*0.2, x3=runif(n),
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x4=runif(n) , z=runif(n))
# poisson count model, mixture in both portions, but note that the qgcomp.partials
# function defines the "positive" variables only by the count portion of the model
(overall5 <- qgcomp.zi.noboot(f=y ~ z + x1 + x2 + x3 + x4 | x1 + x2 + x3 + x4 + z,

expnms = c("x1", "x2", "x3", "x4"),
data=dat, q=4, dist="poisson"))

trainidx5 <- sample(1:nrow(dat), round(nrow(dat)*0.6))
valididx5 <- setdiff(1:nrow(dat),trainidx5)
traindata5 <- dat[trainidx5,]
validdata5 <- dat[valididx5,]
splitres5 <- qgcomp.partials(fun="qgcomp.zi.noboot",

f=y ~ x1 + x2 + x3 + x4 + z | x1 + x2 + x3 + x4 + z, q=4,
traindata=traindata5, validdata=validdata5,
expnms=c("x1", "x2", "x3", "x4"))

splitres5

## End(Not run)

qgcomp.survcurve.boot Survival curve data from a qgcomp survival fit

Description

It is often of interest to examine survival curves from qgcomp.cox.boot models. They can be useful
for checking assumptions about how well the marginal structural model conforms to the underlying
conditional model, such that the overall fit approximates the non-linearity in the underlying model.
This function will yield survival curves, but no measures of uncertainty.

Usage

qgcomp.survcurve.boot(x, ...)

Arguments

x a qgcompfit object from qgcomp.cox.boot

... not used

Value

a list of data.frames: #’

• ’mdfpop’: Average Survival curve (survival, time) based on marginal structural model, aver-
aged over the population at every quantile of exposure

• ’cdfpop’: Population average survival curve (survival, time) based on the underlying condi-
tional model

• ’mdfq’: Survival curves (survival, time) for each quantile based on marginal structural model
• ’cdfq’: Survival curves (survival, time) for each quantile based on underlying conditional

model
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Examples

set.seed(50)
N=200
dat <- data.frame(time=(tmg <- pmin(.1,rweibull(N, 10, 0.1))),

d=1.0*(tmg<0.1), x1=runif(N), x2=runif(N), z=runif(N))
expnms=paste0("x", 1:2)
f = survival::Surv(time, d)~x1 + x2
(fit1 <- survival::coxph(f, data = dat))
(obj <- qgcomp.cox.noboot(f, expnms = expnms, data = dat))
## Not run:
## Not run:
(obj2 <- qgcomp.cox.boot(f, expnms = expnms, data = dat, B=10, MCsize=20000))
curves = cox.survcurve.boot(obj2)
rbind(head(curves$mdfq),tail(curves$mdfq))

## End(Not run)

qgcomp.zi.boot Quantile g-computation for zero-inflated count outcomes

Description

This function estimates a linear dose-response parameter representing a one quantile increase in a
set of exposures of interest for zero-inflated count outcomes. This function is limited to linear and
additive effects of individual components of the exposure. This model estimates the parameters
of a marginal structural zero-inflated count model (MSM) based on g-computation with quantized
exposures. Note: this function allows linear and non-additive effects of individual components of
the exposure, as well as non-linear joint effects of the mixture via polynomial basis functions, which
increase the computational computational burden due to the need for non-parametric bootstrapping.

Usage

qgcomp.zi.boot(
f,
data,
expnms = NULL,
q = 4,
breaks = NULL,
id = NULL,
weights,
alpha = 0.05,
B = 200,
degree = 1,
seed = NULL,
bayes = FALSE,
parallel = FALSE,
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MCsize = 10000,
msmcontrol = zimsm_fit.control(),
parplan = FALSE,
...

)

Arguments

f R style formula

data data frame

expnms character vector of exposures of interest

q NULL or number of quantiles used to create quantile indicator variables rep-
resenting the exposure variables. If NULL, then gcomp proceeds with un-
transformed version of exposures in the input datasets (useful if data are already
transformed, or for performing standard g-computation)

breaks (optional) NULL, or a list of (equal length) numeric vectors that characterize the
minimum value of each category for which to break up the variables named in
expnms. This is an alternative to using ’q’ to define cutpoints.

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster)

weights "case weights" - passed to the "weight" argument of zeroinfl. NOTE - this
does not work with parallel=TRUE!

alpha alpha level for confidence limit calculation

B integer: number of bootstrap iterations (this should typically be >=200, though
it is set lower in examples to improve run-time).

degree polynomial basis function for marginal model (e.g. degree = 2 allows that the
relationship between the whole exposure mixture and the outcome is quadratic.)

seed integer or NULL: random number seed for replicable bootstrap results

bayes not currently implemented.

parallel use (safe) parallel processing from the future and future.apply packages

MCsize integer: sample size for simulation to approximate marginal zero inflated model
parameters. This can be left small for testing, but should be as large as needed
to reduce simulation error to an acceptable magnitude (can compare psi coeffi-
cients for linear fits with qgcomp.zi.noboot to gain some intuition for the level
of expected simulation error at a given value of MCsize)

msmcontrol named list from zimsm_fit.control

parplan (logical, default=FALSE) automatically set future::plan to plan(multisession)
(and set to existing plan, if any, after bootstrapping)

... arguments to glm (e.g. family)
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Details

Zero-inflated count models allow excess zeros in standard count outcome (e.g. Poisson distributed
outcomes). Such models have two components: 1 ) the probability of arising from a degener-
ate distribution at zero (versus arising from a count distribution) and 2 ) the rate parameter of a
count distribution. Thus, one has the option of allowing exposure and covariate effects on the
zero distribution, the count distribution, or both. The zero distribution parameters correspond to
log-odds ratios for the probability of arising from the zero distribution. Count distribution param-
eters correspond to log-rate-ratio parameters. Test statistics and confidence intervals are based on
a non-parametric bootstrap, using the standard deviation of the bootstrap estimates to estimate the
standard error. The bootstrap standard error is then used to estimate Wald-type confidence intervals.
Note that no bootstrapping is done on estimated quantiles of exposure, so these are treated as fixed
quantities.

Of note, this function yields marginal estimates of the expected outcome under values of the joint
exposure quantiles (e.g. the expected outcome if all exposures are below the 1st quartile). These
outcomes can be used to derive estimates of the effect on the marginal expectation of the outcome,
irrespective of zero-inflated/count portions of the statistical model.

Estimates correspond to the average expected change in the (log) outcome per quantile increase in
the joint exposure to all exposures in ‘expnms’. Test statistics and confidence intervals are based on
a non-parametric bootstrap, using the standard deviation of the bootstrap estimates to estimate the
standard error. The bootstrap standard error is then used to estimate Wald-type confidence intervals.
Note that no bootstrapping is done on estimated quantiles of exposure, so these are treated as fixed
quantities

Value

a qgcompfit object, which contains information about the effect measure of interest (psi) and associ-
ated variance (var.psi), as well as information on the model fit (fit) and information on the marginal
structural model (msmfit) used to estimate the final effect estimates.

See Also

Other qgcomp_methods: qgcomp.cch.noboot(), qgcomp.cox.boot(), qgcomp.cox.noboot(),
qgcomp.glm.boot(), qgcomp.glm.noboot(), qgcomp.hurdle.boot(), qgcomp.hurdle.noboot(),
qgcomp.multinomial.boot(), qgcomp.multinomial.noboot(), qgcomp.partials(), qgcomp.zi.noboot()

Examples

set.seed(50)
n=100
dat <- data.frame(y=rbinom(n, 1, 0.5)*rpois(n, 1.2), x1=runif(n), x2=runif(n), z=runif(n))
# poisson count model, mixture in both portions
## Not run:
# warning: the examples below can take a long time to run
res = qgcomp.zi.boot(f=y ~ x1 + x2 | x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=4, dist="poisson", B=1000, MCsize=10000, parallel=TRUE, parplan=TRUE)
qgcomp.zi.noboot(f=y ~ x1 + x2 | x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=4, dist="poisson")
res
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# accuracy for small MCsize is suspect (compare coefficients between boot/noboot versions),
# so re-check with MCsize set to larger value (this takes a long time to run)
res2 = qgcomp.zi.boot(f=y ~ x1 + x2 | x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=4, dist="poisson", B=1000, MCsize=50000, parallel=TRUE, parplan=TRUE)
res2

plot(density(res2$bootsamps[4,]))

# negative binomial count model, mixture and covariate in both portions
qgcomp.zi.boot(f=y ~ z + x1 + x2 | z + x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=4, dist="negbin", B=10, MCsize=10000)

# weighted analysis (NOTE THIS DOES NOT WORK WITH parallel=TRUE!)
dat$w = runif(n)*5
qgcomp.zi.noboot(f=y ~ z + x1 + x2 | x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=4, dist="poisson", weights=w)
# Expect this:
# Warning message:
# In eval(family$initialize) : non-integer #successes in a binomial glm!
qgcomp.zi.boot(f=y ~ x1 + x2 | x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=4, dist="poisson", B=5, MCsize=50000, parallel=FALSE, weights=w)
# Log rr per one IQR change in all exposures (not on quantile basis)
dat$x1iqr <- dat$x1/with(dat, diff(quantile(x1, c(.25, .75))))
dat$x2iqr <- dat$x2/with(dat, diff(quantile(x2, c(.25, .75))))
# note that I(x>...) now operates on the untransformed value of x,
# rather than the quantized value
res2 = qgcomp.zi.boot(y ~ z + x1iqr + x2iqr + I(x2iqr>0.1) + I(x2>0.4) + I(x2>0.9) | x1iqr + x2iqr,

family="binomial", expnms = c('x1iqr', 'x2iqr'), data=dat, q=NULL, B=2,
degree=2, MCsize=200, dist="poisson")

res2

## End(Not run)

qgcomp.zi.noboot Quantile g-computation for zero-inflated count outcomes under linear-
ity/additivity

Description

This function estimates a linear dose-response parameter representing a one quantile increase in a
set of exposures of interest for zero-inflated count outcomes. This function is limited to linear and
additive effects of individual components of the exposure. This model estimates the parameters of a
marginal structural zero-inflated model (MSM) based on g-computation with quantized exposures.
Note: this function is valid only under linear and additive effects of individual components of the
exposure, but when these hold the model can be fit with very little computational burden.

Usage

qgcomp.zi.noboot(
f,
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data,
expnms = NULL,
q = 4,
breaks = NULL,
id = NULL,
weights,
alpha = 0.05,
bayes = FALSE,
...

)

Arguments

f R style formula using syntax from ’pscl’ package: depvar ~ indvars_count |
indvars_zero

data data frame

expnms character vector of exposures of interest

q NULL or number of quantiles used to create quantile indicator variables rep-
resenting the exposure variables. If NULL, then gcomp proceeds with un-
transformed version of exposures in the input datasets (useful if data are already
transformed, or for performing standard g-computation)

breaks (optional) NULL, or a list of (equal length) numeric vectors that characterize the
minimum value of each category for which to break up the variables named in
expnms. This is an alternative to using ’q’ to define cutpoints.

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster)

weights "case weights" - passed to the "weight" argument of zeroinfl.

alpha alpha level for confidence limit calculation

bayes not yet implemented

... arguments to zeroinfl (e.g. dist)

Details

A zero-inflated version of quantile g-computation based on the implementation in the ’pscl’ pack-
age. A zero-inflated distribution is a mixture distribution in which one of the distributions is a point
mass at zero (with probability given by a logistic model), and the other distribution is a discrete or
continuous distribution. This estimates the effect of a joint increase in all exposures on 1) the odds
of belonging to the "zero" vs. "count" portions of the distribution and/or 2) the rate parameter for
the "count" portion of the distribution.

Value

a qgcompfit object, which contains information about the effect measure of interest (psi) and as-
sociated variance (var.psi), as well as information on the model fit (fit) and information on the
weights/standardized coefficients in the positive (pos.weights) and negative (neg.weights) direc-
tions.
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See Also

Other qgcomp_methods: qgcomp.cch.noboot(), qgcomp.cox.boot(), qgcomp.cox.noboot(),
qgcomp.glm.boot(), qgcomp.glm.noboot(), qgcomp.hurdle.boot(), qgcomp.hurdle.noboot(),
qgcomp.multinomial.boot(), qgcomp.multinomial.noboot(), qgcomp.partials(), qgcomp.zi.boot()

Examples

set.seed(50)
n=100
dat <- data.frame(y=rbinom(n, 1, 0.5)*rpois(n, 1.2), x1=runif(n), x2=runif(n), z=runif(n))

# poisson count model, mixture in both portions
qgcomp.zi.noboot(f=y ~ z + x1 + x2 | x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=2, dist="poisson")

# negative binomial count model, mixture and covariate in both portions
qgcomp.zi.noboot(f=y ~ z + x1 + x2 | z + x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=2, dist="negbin")
qgcomp.zi.noboot(f=y ~ z + x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=2, dist="negbin") # equivalent

# negative binomial count model, mixture only in the 'count' portion of the model
qgcomp.zi.noboot(f=y ~ z + x1 + x2 | z, expnms = c('x1', 'x2'), data=dat, q=2, dist="negbin")

# weighted analysis
dat$w = runif(n)*5
qgcomp.zi.noboot(f=y ~ z + x1 + x2 | x1 + x2, expnms = c('x1', 'x2'),

data=dat, q=2, dist="poisson", weights=w)
# Expect this:
# Warning message:
# In eval(family$initialize) : non-integer #successes in a binomial glm!

quantize Quantizing exposure data

Description

Create variables representing indicator functions with cutpoints defined by quantiles. Output a list
that includes: 1) a dataset that is a copy of data, except that the variables whose names are included
in the expnms variable are transformed to their quantized version and 2) an unnamed list of the
quantile cutpoints that are used for each of the variables that were quantized

Usage

quantize(data, expnms, q = 4, breaks = NULL)
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Arguments

data a data frame

expnms a character vector with the names of the columns to be quantized

q integer, number of quantiles used in creating quantized variables

breaks (optional) list of (equal length) numeric vectors that characterize the minimum
value of each category for which to break up the variables named in expnms.
This is an alternative to using ’q’ to define cutpoints.

Details

This function creates categorical variables in place of the exposure variables named in ’expnms.’
For example, a continuous exposure ’x1’ will be replaced in the output data by another ’x1’ that
takes on values 0:(q-1), where, for example, the value 1 indicates that the original x1 value falls
between the first and the second quantile.

Value

A list containing the following fields

data a quantized version of the original dataframe

breaks a list of the quantile cutpoints used to create the quantized variables which includes a very
small number for the minimum and a very large number for the maximum to avoid causing
issues when using these breaks to quantize new data.

Examples

set.seed(1232)
dat = data.frame(y=runif(100), x1=runif(100), x2=runif(100), z=runif(100))
qdata = quantize(data=dat, expnms=c("x1", "x2"), q=4)
table(qdata$data$x1)
table(qdata$data$x2)
summary(dat[c("y", "z")]);summary(qdata$data[c("y", "z")]) # not touched
dat = data.frame(y=runif(100), x1=runif(100), x2=runif(100), z=runif(100))
# using 'breaks' requires specifying min and max (the qth quantile)
# example with theoretical quartiles (could be other relevant values)
qdata2 = quantize(data=dat, expnms=c("x1", "x2"),

breaks=list(c(-1e64, .25, .5, .75, 1e64),
c(-1e64, .25, .5, .75, 1e64)
))

table(qdata2$data$x1)
table(qdata2$data$x2)
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se_comb Calculate standard error of weighted linear combination of random
variables

Description

This function uses the Delta method to calculate standard errors of linear functions of variables
(similar to lincom in Stata). Generally, users will not need to call this function directly.

Usage

se_comb(expnms, covmat, grad = NULL)

Arguments

expnms a character vector with the names of the columns to be of interest in the covari-
ance matrix for a which a standard error will be calculated (e.g. same as expnms
in qgcomp fit)

covmat covariance matrix for parameters, e.g. from a model or bootstrap procedure
grad the "weight" vector for calculating the contribution of each variable in expnms

to the final standard error. For a linear combination, this is equal to a vector of
ones (and is set automatically). Or can be calculated via the grad.poly procedure,
in the case of coming up with proper weights when the combination of expnms
derives from a polynomial function (as in qgcomp.glm.boot with degree>1).

Details

This function takes inputs of a set of exposure names (character vector) and a covariance matrix
(with colnames/rownames that contain the full set of exposure names), as well as a possible grad
parameter to calculate the variance of a weighted combination of the exposures in expnms, where
the weights are based off of grad (which defaults to 1, so that this function yields the variance of a
sum of all variables in expnms)

Here is simple version of the delta method for a linear combination of three model coefficients:

f(β) = β1 + β2 + β3 given gradient vector

G = [d(f(β))/dβ1 = 1, d(f(β))/dβ2 = 1, d(f(β))/dβ3 = 1]

t(G)Cov(β)G = delta method variance, where t() is the transpose operator

Examples

vcov = rbind(c(1.2, .9),c(.9, 2.0))
colnames(vcov) <- rownames(vcov) <- expnms <- c("x1", "x2")
se_comb(expnms, vcov, c(1, 0))^2 # returns the given variance
se_comb(expnms, vcov, c(1, 1)) # default linear MSM fit: all exposures
# have equal weight
se_comb(expnms, vcov, c(.3, .1)) # used when one exposure contributes

# to the overall fit more than others = d(msmeffect)/dx



66 simdata_quantized

simdata_quantized Simulate quantized exposures for testing methods

Description

Simulate quantized exposures for testing methods

Usage

simdata_quantized(
outcometype = c("continuous", "logistic", "survival", "multinomial"),
n = 100,
corr = NULL,
b0 = 0,
coef = c(1, 0, 0, 0),
q = 4,
yscale = 1,
shape0 = 3,
scale0 = 5,
censtime = 4,
ncheck = TRUE,
...

)

Arguments

outcometype Character variable that is one of c("continuous", "logistic", "survival"). Selects
what type of outcome should be simulated (or how). continuous = normal, con-
tinous outcome, logistic= binary outcome from logistic model, survival = right
censored survival outcome from Weibull model.

n Sample size
corr NULL, or vector of correlations between the first exposure and subsequent expo-

sures (if length(corr) < (length(coef)-1), then this will be backfilled with zeros)
b0 (continuous, binary outcomes) model intercept
coef Vector of coefficients for the outcome (i.e. model coefficients for exposures).

The length of this determines the number of exposures.
q Number of levels or "quanta" of each exposure
yscale (continuous outcomes) error scale (residual error) for normally distributed out-

comes
shape0 (survival outcomes) baseline shape of weibull distribution rweibull
scale0 (survival outcomes) baseline scale of weibull distribution rweibull
censtime (survival outcomes) administrative censoring time
ncheck (logical, default=TRUE) adjust sample size if needed so that exposures are ex-

actly evenly distributed (so that qgcomp::quantize(exposure) = exposure)
... unused
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Details

Simulate continuous (normally distributed errors), binary (logistic function), or event-time out-
comes as a linear function

Value

a data frame

See Also

qgcomp.glm.boot, and qgcomp.glm.noboot

Examples

set.seed(50)
qdat = simdata_quantized(

outcometype="continuous",
n=10000, corr=c(.9,.3), coef=c(1,1,0,0),
q = 8

)
cor(qdat)
qdat = simdata_quantized(

outcometype="continuous",
n=10000, corr=c(-.9,.3), coef=c(1,2,0,0),
q = 4

)
cor(qdat)
table(qdat$x1)
qgcomp.glm.noboot(y~.,data=qdat)

qdat = simdata_quantized(
outcometype="multinomial",
n=10000, corr=c(-.9), coef=cbind(c(1,-1,0,0), c(1,.2,0,0)),
q = 4

)

split_data Perform sample splitting

Description

This is a convenience function to split the input data into two independent sets, possibly accounting
for single level clustering. These two sets can be used with qgcomp.partials to get "partial"
positive/negative effect estimates from the original data, where sample splitting is necessary to get
valid confidence intervals and p-values. Sample splitting is also useful for any sort of exploratory
model selection, where the training data can be used to select the model and the validation model
used to generate the final estimates (this process should not be iterative - e.g. no "checking" the
results in the validation data and then re-fitting, as this invalidates inference in the validation set.)
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E.g. you could use the training data to select non-linear terms for the model and then re-fit in
validation data to get unbiased estimates.

Usage

split_data(data, cluster = NULL, prop.train = 0.4)

Arguments

data A data.frame for use in qgcomp fitting

cluster NULL (default) or character value naming a cluster identifier in the data. This
is to prevent observations from a single cluster being in both the training and
validation data, which reduces the effectiveness of sample splitting.

prop.train proportion of the original dataset (or proportion of the clusters identified via the
’cluster’ parameter) that are used in the training data (default=0.4)

Value

A list of the following type: list( trainidx = trainidx, valididx = valididx, traindata = traindata,
validdata = validdata )

e.g. if you call spl = split_data(dat), then spl$traindata will contain a 40% sample from the
original data, spl$validdata will contain the other 60% and spl$trainidx, spl$valididx will contain
integer indexes that track the row numbers (from the original data dat) that have the training and
validation samples.

Examples

data(metals)
set.seed(1231124)
spl = split_data(metals)
Xnm <- c(

'arsenic','barium','cadmium','calcium','chromium','copper',
'iron','lead','magnesium','manganese','mercury','selenium','silver',
'sodium','zinc'

)
dim(spl$traindata) # 181 observations = 40% of total
dim(spl$validdata) # 271 observations = 60% of total
splitres <- qgcomp.partials(fun="qgcomp.glm.noboot", f=y~., q=4,

traindata=spl$traindata,validdata=spl$validdata, expnms=Xnm)
splitres

# also used to compare linear vs. non-linear fits (useful if you have enough data)
set.seed(1231)
spl = split_data(metals, prop.train=.5)
lin = qgcomp.glm.boot(f=y~., q=4, expnms=Xnm, B=5, data=spl$traindata)
nlin1 = qgcomp.glm.boot(f=y~. + I(manganese^2) + I(calcium^2), expnms=Xnm, deg=2,

q=4, B=5, data=spl$traindata)
nlin2 = qgcomp.glm.boot(f=y~. + I(arsenic^2) + I(cadmium^2), expnms=Xnm, deg=2,

q=4, B=5, data=spl$traindata)
AIC(lin);AIC(nlin1);AIC(nlin2)
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# linear has lowest training AIC, so base final fit off that (and bootstrap not needed)
qgcomp.glm.noboot(f=y~., q=4, expnms=Xnm, data=spl$validdata)

summary.qgcompmultfit Summarize gcompmultfit object

Description

Summary printing to include coefficients, standard errors, hypothesis tests, weights

Usage

## S3 method for class 'qgcompmultfit'
summary(object, ..., tests = NULL)

Arguments

object Result from qgcomp multinomial fit (qgcompmultfit object).

... Unused

tests Character vector (e.g. c("global", "homogeneity")) that determine the types of
hypothesis tests that are printed

Value

qgcompmulttest object (list) with results of a chi-squared test

tidy.qgcompfit Tidy method for qgcompfit object

Description

Tidy summarizes information about the components of a model. A model component might be a
single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers
to be a model component varies cross models but is usually self-evident. If a model has several
distinct types of components, you will need to specify which components to return. (Description
taken from tidyr::tidy help file.)

Usage

## S3 method for class 'qgcompfit'
tidy(x, conf.level = 1 - x$alpha, exponentiate = FALSE, quick = FALSE, ...)
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Arguments

x a agcompfit object created by qgcomp().

conf.level Real number between 0 and 1 corresponding to nominal percentage/100 of con-
fidence limit (e.g. conf.level=0.95 means 95 per cent confidence intervals). De-
faults to 1-alpha level of qgcompfit.

exponentiate Logical indicating whether or not to exponentiate the the coefficient estimates.
This is typical for logistic and multinomial regressions, but a bad idea if there is
no log or logit link. Defaults to FALSE.

quick Logical indiciating if the only the term and estimate columns should be returned.
Often useful to avoid time consuming covariance and standard error calcula-
tions. Defaults to FALSE.

... Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in ..., where they will be
ignored. If the misspelled argument has a default value, the default value will
be used. For example, if you pass conf.lvel = 0.9, all computation will pro-
ceed using conf.level = 0.95. Additionally, if you pass newdata = my_tibble to
an augment() method that does not accept a newdata argument, it will use the
default value for the data argument.

vc_comb Calculate covariance matrix between one random variable and a lin-
ear combination of random variables

Description

This function uses the Delta method to calculate a covariance matrix of linear functions of variables
and is used internally in qgcomp. Generally, users will not need to call this function directly.

Usage

vc_comb(aname = "(Intercept)", expnms, covmat, grad = NULL)

Arguments

aname character scalar with the name of the first column of interest (e.g. variable A in
the examples given in the details section)

expnms a character vector with the names of the columns to be of interest in the covari-
ance matrix for a which a standard error will be calculated (e.g. same as expnms
in qgcomp fit)

covmat covariance matrix for parameters, e.g. from a model or bootstrap procedure

grad not yet used
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Details

This function takes inputs of a name of random variable (character), as set of exposure names
(character vector) and a covariance matrix (with colnames/rownames that contain the indepdendent
variable and the full set of exposure names). See se_comb for details on variances of sums of
random variables. Briefly, for variables A, B and C with covariance matrix Cov(A,B,C), we can
calculate the covariance Cov(A,B+C) with the formula Cov(A,B) + Cov(A,C), and Cov(A,B+C+D)
= Cov(A,B) + Cov(A,C) + Cov(A,D), and so on.

Value

A covariance matrix

Examples

vcov = rbind(c(0.010051348, -0.0039332248, -0.0036965571),
c(-0.003933225, 0.0051807876, 0.0007706792),
c(-0.003696557, 0.0007706792, 0.0050996587))

colnames(vcov) <- rownames(vcov) <- c("(Intercept)", "x1", "x2")
expnms <- rownames(vcov)[2:3]
aname = rownames(vcov)[1]
vc_comb(aname, expnms, vcov) # returns the given covariance matrix

zimsm_fit Secondary prediction method for the (zero-inflated) qgcomp MSM.

Description

this is an internal function called by qgcomp.zi.boot, but is documented here for clarity. Generally,
users will not need to call this function directly.

Usage

zimsm_fit(
f,
qdata,
intvals,
expnms,
main = TRUE,
degree = 1,
id = NULL,
weights,
MCsize = 10000,
containmix = list(count = TRUE, zero = TRUE),
bayes = FALSE,
x = FALSE,
msmcontrol = zimsm_fit.control(),
...

)
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Arguments

f an r formula representing the conditional model for the outcome, given all ex-
posures and covariates. Interaction terms that include exposure variables should
be represented via the AsIs function

qdata a data frame with quantized exposures (as well as outcome and other covariates)

intvals sequence, the sequence of integer values that the joint exposure is ’set’ to for
estimating the msm. For quantile g-computation, this is just 0:(q-1), where q is
the number of quantiles of exposure.

expnms a character vector with the names of the columns in qdata that represent the
exposures of interest (main terms only!)

main logical, internal use: produce estimates of exposure effect (psi) and expected
outcomes under g-computation and the MSM

degree polynomial bases for marginal model (e.g. degree = 2 allows that the relation-
ship between the whole exposure mixture and the outcome is quadratic. De-
fault=1 )

id (optional) NULL, or variable name indexing individual units of observation
(only needed if analyzing data with multiple observations per id/cluster)

weights not yet implemented

MCsize integer: sample size for simulation to approximate marginal hazards ratios

containmix named list of logical scalars with names "count" and "zero"

bayes not used

x keep design matrix? (logical)

msmcontrol named list from zimsm_fit.control

... arguments to zeroinfl (e.g. dist)

Details

This function first computes expected outcomes under hypothetical interventions to simultaneously
set all exposures to a specific quantile. These predictions are based on g-computation, where the
exposures are ‘quantized’, meaning that they take on ordered integer values according to their ranks,
and the integer values are determined by the number of quantile cutpoints used. The function then
takes these expected outcomes and fits an additional model (a marginal structural model) with the
expected outcomes as the outcome and the intervention value of the exposures (the quantile integer)
as the exposure. Under causal identification assumptions and correct model specification, the MSM
yields a causal exposure-response representing the incremental change in the expected outcome
given a joint intervention on all exposures.

See Also

qgcomp.cox.boot, and qgcomp.cox.noboot
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Examples

set.seed(50)
n=100
## Not run:
dat <- data.frame(y=rbinom(n, 1, 0.5)*rpois(n, 1.2), x1=runif(n), x2=runif(n), z=runif(n))
expnms = c("x1", "x2")
q = 4
qdata = quantize(dat, q=q, expnms=expnms)$data
f = y ~ x1 + x2 + z | 1
msmfit <- zimsm_fit(f, qdata, intvals=(1:q)-1, expnms, main=TRUE,

degree=1, id=NULL, MCsize=10000, containmix=list(count=TRUE, zero=FALSE),
x=FALSE)

msmfit$msmfit

## End(Not run)

zimsm_fit.control Control of fitting parameters for zero inflated MSMs

Description

this is an internal function called by qgcomp.zi.boot, but is documented here for clarity. Generally,
users will not need to call this function directly.

Usage

zimsm_fit.control(predmethod = c("components", "catprobs"))

Arguments

predmethod character in c("components", "catprobs"). "components" simulates from the
model parameters directly while "catprobs" simulates outcomes from the cat-
egory specific probabilities, which is output from predict.zeroinfl. The former
is slightly more flexible and stable, but the latter is preferred in zero inflated
negative bionomial models.

Details

Provides fine control over zero inflated MSM fitting
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