Package ‘quadprogXT’

October 13, 2022
Title Quadratic Programming with Absolute Value Constraints
Version 0.0.5

Description Extends the quadprog package to solve quadratic programs with
absolute value constraints and absolute values in the objective function.

Imports quadprog

License GPL (>=2)

Encoding UTF-8

LazyData true

Suggests tinytest

RoxygenNote 6.1.1

NeedsCompilation no

Author Bob Harlow [aut, cre]

Maintainer Bob Harlow <rharlow86@gmail.com>
Repository CRAN

Date/Publication 2020-01-15 12:30:02 UTC

R topics documented:

convertToCompact e
normalizeConstraints e e e e e e
solveQPXT e

Index

2 normalizeConstraints

convertToCompact "Sparsify’ constraint matrix

Description

’Sparsify’ constraint matrix

Usage

convertToCompact (Amat)

Arguments

Amat a constraint matrix as defined in solve.QP

Value

a list with two elements: Amat and Aind as necessary to be passed to solve.QP.compact

See Also
quadprog::solve.QP
quadprog::solve.QP.compact

normalizeConstraints Normalize constraint matrix

Description

it is not uncommon for quadprog to fail when there are large differences in 2-norm between the
columns of the constraint matrix (Amat). It is possible to alleviate this issue in some cases by
normalizing the constraints (and their boundaries, defined by bvec).

Usage

normalizeConstraints(Amat, bvec)

Arguments
Amat constraint matrix as defined by solve.QP
bvec constraints as defined by solve.QP
Value

a list with two elements: Amat and bvec that contain the normalized constraints.

solveQPXT 3

See Also
quadprog::solve.QP

quadprog::solve.QP.compact

solveQPXT Solve a quadratic program with absolute values in constraints & ob-
Jjective

Description

solveQPXT allows for absolute value constraints and absolute values in the objective. buildQP
builds a parameter list that can then be passed to quadprog::solve.QP.compact or quadprog::solve.QP
directly if desired by the user. solveQPXT by default implicitly takes advantage of sparsity in the
constraint matrix and can improve numerical stability by normalizing the constraint matrix. For the
rest of the documentation, assume that Dmat is n X n.

The solver solves the following problem (each * corresponds to matrix multiplication):

min:

-t(dvec) * b + 1/2 t(b) * Dmat * b +

-t(dvecPosNeg) * c(b_positive, b_negative) +
-t(dvecPosNegDelta) * c(deltab_positive, deltab_negative)

s.t.

t(Amat) * b >= bvec

t(AmatPosNeg) * c(b_positive, b_negative) >= bvecPosNeg

t (AmatPosNegDelta) * c(deltab_positive, deltab_negative) >= bvecPosNegDelta
b_positive, b_negative >= 0,

b = b_positive - b_negative

deltab_positive, deltab_negative >= 0,

b - b0 = deltab_positive - deltab_negative

Usage

solveQPXT(...)

buildQP(Dmat, dvec, Amat, bvec, meq = 0, factorized = FALSE,
AmatPosNeg = NULL, bvecPosNeg = NULL, dvecPosNeg = NULL,
b@ = NULL, AmatPosNegDelta = NULL, bvecPosNegDelta = NULL,
dvecPosNegDelta = NULL, tol = 1e-08, compact = TRUE,
normalize = TRUE)

4 solveQPXT

Arguments

parameters to pass to buildQP when calling solveQPXT

Dmat matrix appearing in the quadratic function to be minimized.

dvec vector appearing in the quadratic function to be minimized.

Amat matrix defining the constraints under which we want to minimize the quadratic
function.

bvec vector holding the values of by (defaults to zero).

meq the first meq constraints are treated as equality constraints, all further as inequal-
ity constraints (defaults to 0).

factorized logical flag: if TRUE, then we are passing R~' (where D = R” R) instead of the
matrix D in the argument Dmat.

AmatPosNeg 2n x k matrix of constraints on the positive and negative part of b

bvecPosNeg k length vector of thresholds to the constraints in AmatPosNeg

dvecPosNeg k * 2n length vector of loadings on the positive and negative part of b, respec-
tively

bo a starting point that describes the ’current’ state of the problem such that con-

straints and penalty on absolute changes in the decision variable from a starting
point can be incorporated. b0 is an n length vector. Note that b0 is NOT a
starting point for the optimization - that is handled implicitly by quadprog.
AmatPosNegDelta
2n x 1 matrix of constraints on the positive and negative part of a change in b
from a starting point, b0.
bvecPosNegDelta
1 length vector of thresholds to the constraints in AmatPosNegDelta
dvecPosNegDelta
1 * 2n length vector of loadings in the objective function on the positive and
negative part of changes in b from a starting point of b0.

tol tolerance along the diagonal of the expanded Dmat for slack variables
compact logical: if TRUE, it is assumed that we want to use solve.QP.compact to solve
the problem, which handles sparsity.
normalize logical: should constraint matrix be normalized
Details

In order to handle constraints on b_positive and b_negative, slack variables are introduced. The
total number of parameters in the problem increases by the following amounts:

If all the new parameters (those not already used by quadprog) remain NULL, the problem size
does not increase and quadprog::solve.QP (.compact) is called after normalizing the constraint ma-
trix and converting to a sparse matrix representation by default.

If AmatPosNeg, bvecPosNeg or dvecPosNeg are not null, the problem size increases by n If Am-
atPosNegDelta or devecPosNegDelta are not null, the problem size increases by n. This results in
a potential problem size of up to 3 * n. Despite the potential large increases in problem size, the
underlying solver is written in Fortran and converges quickly for problems involving even hundreds

solveQPXT 5

of parameters. Additionally, it has been the author’s experience that solutions solved via the convex
quadprog are much more stable than those solved by other methods (e.g. a non-linear solver).

Note that due to the fact that the constraints are by default normalized, the original constraint values
the user passed will may not be returned by buildQP.

Examples
##quadprog example”
Dmat <- matrix(9,3,3)
diag(Dmat) <- 1
dvec <- ¢(0,5,0)
Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)
bvec <- c(-8,2,0)

gp <- quadprog::solve.QP(Dmat,dvec,Amat,bvec=bvec)
gpXT <- solveQPXT(Dmat,dvec,Amat,bvec=bvec)
range(gp$solution - gpXT$solution)

N <- 10

set.seed(2)

cr <- matrix(runif(N * N, @, .05), N, N)

diag(cr) <- 1

cr <- (cr + t(cr)) / 2

set.seed(3)

sigs <- runif(N, min = .02, max = .25)
set.seed(5)

dvec <- runif(N, -.1, .1)

Dmat <- sigs %0% sigs * cr

Amat <- cbind(diag(N), diag(N) * -1)

bvec <- c(rep(-1, N), rep(-1, N))

resBase <- solveQPXT(Dmat, dvec, Amat, bvec)
##absolute value constraint on decision variable:
res <- solveQPXT(Dmat, dvec, Amat, bvec,
AmatPosNeg = matrix(rep(-1, 2 * N)), bvecPosNeg = -1)
sum(abs(res$solution[1:N1))

penalty of L1 norm
resL1Penalty <- solveQPXT(Dmat, dvec, Amat, bvec, dvecPosNeg = -.005 * rep(1, 2 * N))
sum(abs(resL1Penalty$solution[1:N]))

constraint on amount decision variable can vary from a starting point
b0 <- rep(.15, N)

thresh <- .25

res <- solveQPXT(Dmat, dvec, Amat, bvec, b0 = b0,

AmatPosNegDelta = matrix(rep(-1, 2 * N)), bvecPosNegDelta = -thresh)
sum(abs(res$solution[1:N] - b@))

##use buildQP, then call solve.QP.compact directly

gp <- buildQP(Dmat, dvec, Amat, bvec, b@® = b0,

AmatPosNegDelta = matrix(rep(-1, 2 * N)), bvecPosNegDelta = -thresh)
res2 <- do.call(quadprog: :solve.QP.compact, qgp)

range(res$solution - res2$solution)

Index

buildQP (solveQPXT), 3
convertToCompact, 2
normalizeConstraints, 2

solveQPXT, 3

	convertToCompact
	normalizeConstraints
	solveQPXT
	Index

