Package ‘rxode2’

January 31, 2024
Version 2.1.2
Title Facilities for Simulating from ODE-Based Models
Maintainer Matthew L. Fidler <matthew.fidler@gmail.com>
Depends R (>=4.0.0)

Suggests Matrix, DT, covr, crayon, curl, digest, dplyr (>= 0.8.0),
ggrepel, gridExtra, htmltools, knitr, learnr, microbenchmark,
nlme, remotes, rlang, rmarkdown, scales, shiny, stringi,
symengine, testthat, tidyr, usethis, vdiffr (>= 1.0), withr,
xgxr, pillar, tibble, units (>= 0.6-0), rsconnect, devtools,
patchwork, nlmixr2data, lifecycle, kableExtra

Imports PreciseSums (>= 0.3), Rcpp (>= 0.12.3), backports, cli (>=
2.0.0), checkmate, ggplot2 (>= 3.4.0), inline, lotri (>=
0.4.0), magrittr, memoise, methods, rex, sys, tools, utils,
rxode2ll(>= 2.0.9), rxode2et (>= 2.0.9), rxode2parse (>
2.0.16), rxode2random (> 2.0.11), data.table (>= 1.12.4), gs

Description Facilities for running simulations from ordinary
differential equation ('ODE') models, such as pharmacometrics and other
compartmental models. A compilation manager translates the ODE model
into C, compiles it, and dynamically loads the object code into R for
improved computational efficiency. An event table object facilitates
the specification of complex dosing regimens (optional) and sampling
schedules. NB: The use of this package requires both C and
Fortran compilers, for details on their use with R please see
Section 6.3, Appendix A, and Appendix D in the "R Administration and
Installation" manual. Also the code is mostly released under GPL. The
'VODE' and 'LSODA' are in the public domain. The information is available
in the inst/COPYRIGHTS.

BugReports https://github.com/nlmixr2/rxode2/issues/
NeedsCompilation yes

VignetteBuilder knitr

License GPL (>= 3)

URL https://nlmixr2.github.io/rxode2/,
https://github.com/nlmixr2/rxode2/

https://github.com/nlmixr2/rxode2/issues/
https://nlmixr2.github.io/rxode2/
https://github.com/nlmixr2/rxode2/

2 R topics documented:

RoxygenNote 7.3.1
Biarch true

LinkingTo rxode2parse (>= 2.0.12), rxode2random, PreciseSums (>= 0.3),
Repp, ReppArmadillo (>= 0.9.300.2.0), BH

Encoding UTF-8
LazyData true
Language en-US
Config/testthat/edition 3

Author Matthew L. Fidler [aut, cre] (<https://orcid.org/0000-0001-8538-6691>),
Melissa Hallow [aut],
Wenping Wang [aut],
Zufar Mulyukov [ctb],
Alan Hindmarsh [ctb],
Arun Srinivasan [ctb],
Awad H. Al-Mohy [ctb],
Cleve Moler [ctb],

Drew Schmidt [ctb],
Ernst Hairer [ctb],
Gerhard Wanner [ctb],
Gilbert Stewart [ctb],
Hadley Wickham [ctb],
Jack Dongarra [ctb],

Jim Bunch [ctb],

Linda Petzold [ctb],
Martin Maechler [ctb],
Matt Dowle [ctb],

Matteo Fasiolo [ctb],
Nicholas J. Higham [ctb],
Roger B. Sidje [ctb],
Simon Frost [ctb],

Yu Feng [ctb],

Bill Denney [ctb] (<https://orcid.org/0000-0002-5759-428X>)

Repository CRAN
Date/Publication 2024-01-30 23:30:02 UTC

R topics documented:

copyUL .o o e 5
.handleSingleErrTypeNormOrTFoceiBase 6
.matchesLangTemplate 7
.modelHandleModelLines 7
.quoteCalllnfollines e e 8
axLinCmtGen o oL L e 9
IXWIthOptions o L L e 9

IXWIthWd . . e 10

https://orcid.org/0000-0001-8538-6691
https://orcid.org/0000-0002-5759-428X

R topics documented: 3

ASAND oo e e 11
as.model L L e e e 13
asaXUl . . . o . e e e 15
assertRxUi. o o e 16
binomProbs L 18
) 21
SAMIMAD .+« .« ¢ v v e 21
gammapDer L e e 22
gammaplnv 23
GAMIMAQ .« « . v ¢ v v e 24
gammaqlnv e 25
genShinyApp.template 26
getRxThreads o . . e 27
IrxUL ..o e 28
INI<- Lo e 31
ikBeta e 31
IGKBIinom e e e e e 32
llikCauchy e 34
IHKChisq o o e e 35
IHKEXp o e 36
1 37
IHikGamma e 38
IkGeom e e e e e e e 39
IHKNDInOmM o e e e e e e e e 40
IHkNbinomMuo e 42
IGKNorm o e e e e e 43
HKPOIS e 44
IHKT . . o e 45
WikUnif . . oo 46
HikWeibull 47
logit e 48
lowergamma L. e e e e e e e 50
meanProbs oL 51
model.function L e e e 53
model<- . . . e 55
modelExtract e 55
odeMethodTolnt. e 58
plotrxSolve 59
Probit e e e e e 59
rxAllowUnload e 60
rxAppendModel oL 61
rxAssignControlValue 62
XASSIgNPtr . . . Lo e 63
TXDEta e e e 63
rxbinomo 64
TXCAUChY o e e e 66
rxchisq L e 67

rXClean e e 68

R topics documented:

rxCompile e e e 69
rxControlUpdateSens e 71
rxCreateCache e 72
XD e 72
rxDelete e e 73
rxDfdy . . . 74
TXEXP « v o e e e e e e e e e e e e e e e e e 74
X e e 76
rXFun . .o e 77
TXZAMMA . o o v v v e 80
TXZEOML « « v v v e e e e e e e e e e e e e e e e 81
rxGetControl L e 83
rxGetLin L e e 83
rxGetrxode2 e e e 84
rxHtml e e 85
rxIndLinState e 85
rxIndLinStrategy L. 86
rxIndLin_ L s 86
IXINV . . e 87
rxIsCurrent L e e 88
rxLhs . . . e 88
rxLock . . . e 89
rXnbinom e e e e e e 89
IXNOITIL o o e e e e e e e e e e e e 91
TXNOTMV . . . L o e e e e 92
rXode2 e e 93
IXOdE2<- e e e e 112
IXOPEXPr o 114
TXOTd o e e 115
rxParams e 116
rxPkg . e 118
TXPOIS .+ v v v e i e e e e e e e e e e e e e 119
XPp . e 120
rxPreferredDistributionName 122
rXProgress 123
rxRemoveControl e 124
rxRename 124
rxReservedKeywords L 126
rxResidualError 126
XS . e e e 127
rxSetControl L e e e 128
rxSetCovariateNamesForPiping 128
rxSetPipingAuto L e 130
rxSetProd L e e 131
rxSetProgressBar L. 131
rXSetSum e 132
rxShiny 132

rxSimThetaOmega 133

.copyUi 5
IXSOIVe . . . 137
IXSEALE © . . o o o e 151
rxSumProdModel 152
rxSupportedFuns oL e 152
TXSUPPIESSMSE o e e e e e e e 153
rxSymInvChol e 154
XSyncOptONS o o e e e e e e e 155
rxSyntaxFunctions 155
TXE o v e e e e e e e e 156
rxTempDir. oo 157
rxTheme e 157
rXToSE e 158
rXTrans e e 159
rxUiDecompress 161
rxUiGet.cmtlines e e e 162
rXuUnif ..o e e e e 165
rxUnloadAll e e 166
TXUSE . . o o e e e e e e e 167
rxValidate e e e e e 167
rxweibull . ..o e e 168
Stat_AMt e e e e 169
SEAL CEMNS . . . v v v v e e e e e e e e s 172
summary.rxode2 L e e 173
update.rxUi L L 174
UPPEIZAMIMA . « . . v v v e e e et e e e e e e e e e e e e e e e e e 174
ZETORE e 175

Index 177

.copyUi This copies the rxode2 Ul object so it can be modified
Description

This copies the rxode2 Ul object so it can be modified

Usage

.copyUi (ui)

Arguments

ui

Value

Original Ul object

Copied UI object

6 .handleSingleErrTypeNormOrTFoceiBase

Author(s)
Matthew L. Fidler

.handleSingleErrTypeNormOrTFoceiBase
Handle the single error for normal or t distributions

Description

Handle the single error for normal or t distributions

Usage

.handleSingleErrTypeNormOrTFoceiBase(
env,
predl,
errNum = 1L,
rxPredL1lik = TRUE

)
Arguments
env Environment for the parsed model
predi The data. frame of the current error
errNum The number of the error specification in the nlmixr2 model
rxPredL1ik A boolean indicating if the log likelihood should be calculated for non-normal
distributions. By default TRUE.
Value

A list of the lines added. The lines will contain

* rx_yj_ which is an integer that corresponds to the transformation type.
* rx_lambda_ is the transformation lambda

* rx_low_ The lower boundary of the transformation

* rx_hi_ The upper boundary of the transformation

* rx_pred_f_ The prediction function

* rx_pred_ The transformed prediction function

e rx_r_ The transformed variance

Author(s)
Matthew Fidler

.matchesLangTemplate

.matcheslLangTemplate Check if a language object matches a template language object

Description

non

e If template == str2lang("."), it will match anything.
o If template == str2lang(".name"), it will match any name.
e If template == str2lang(”.call()"), it will match any call.

Usage

.matchesLangTemplate(x, template)

Arguments

X The object to check

template The template object it should match
Value

TRUE if it matches, FALSE, otherwise

Examples

.matchesLangTemplate(str2lang("d/dt(foo)"), str2lang("d/dt(.name)"))
.matchesLangTemplate(str2lang("d/dt(foo)"), str2lang("d/foo(.name)"))
.matchesLangTemplate(str2lang("d/dt(foo)"), str2lang("d/."))

.modelHandleModellLines
Handle model lines

Description

Handle model lines

Usage

.modelHandleModellLines(
modelLines,
rxui,
modifyIni = FALSE,
append = NULL,
auto = getOption("rxode2.autoVarPiping”, TRUE),
cov = NULL,
envir

8 .quoteCalllnfoLines
Arguments
modellLines The model lines that are being considered
rxui The rxode2 UI object
modifyIni Should the ini() be considered
append This is a boolean to determine if the lines are appended in piping. The possible
values for this is:
* TRUE which is when the lines are appended to the model instead of replaced
* FALSE when the lines are replaced in the model (default)
* NA is when the lines are pre-pended to the model instead of replaced
* lhs expression, which will append the lines after the last observed line
of the expression lhs
auto This boolean tells if piping automatically selects the parameters should be char-
acterized as a population parameter, between subject variability, or a covariate.
When TRUE this automatic selection occurs. When FALSE this automatic selec-
tion is turned off and everything is added as a covariate (which can be promoted
to a parameter with the ini statement). By default this is TRUE, but it can be
changed by options(rxode2.autoVarPiping=FALSE).
cov is a character vector of variables that should be assumed to be covariates. This
will override automatic promotion to a population parameter estimate (or an eta)
envir Environment for evaluation
Value
New UI
Author(s)
Matthew L. Fidler
.quoteCalllInfolLines Returns quoted call information
Description
Returns quoted call information
Usage
.quoteCallInfoLines(callInfo, envir = parent.frame(), iniDf = NULL)
Arguments
calllnfo Call information
envir Environment for evaluation (if needed)
inibf The parent model iniDf when piping in a ini block (NULL otherwise)

1rxLinCmtGen 9

Value

Quote call information. for name=expression, change to name<-expression in quoted call list.
For expressions that are within brackets ie { }, unlist the brackets as if they were called in one single
sequence.

Author(s)
Matthew L. Fidler

.rxLinCmtGen Internal function to generate the model variables for a linCmt() model

Description

Internal function to generate the model variables for a linCmt() model

Usage

.rxLinCmtGen(lenState, vars)

Arguments
lenState Length of the state
vars Variables in the model
Value

Model variables of expanded linCmt model

Author(s)
Matthew L. Fidler

.rxWithOptions Temporarily set options then restore them while running code

Description

Temporarily set options then restore them while running code

Usage

.rxWithOptions(ops, code)

10 rxWithWd

Arguments
ops list of options that will be temporarily set for the code
code The code to run during the sink

Value

value of code

Examples

.rxWithOptions(list(digits = 21), {
print(pi)
1)

print(pi)

.rxWithwd Temporarily set options then restore them while running code

Description

Temporarily set options then restore them while running code

Usage

.rxWithWd(wd, code)

Arguments
wd working directory to temporarily set the system to while evaluating the code
code The code to run during the sink

Value

value of code

Examples

.rxWithWd(tempdir(), {
getwd()
»

getwd()

as.ini

as.ini Turn into an ini block for initialization

Description

Turn into an ini block for initialization

Usage
as.ini(x)

S3 method for class 'character'
as.ini(x)

S3 method for class 'data.frame'
as.ini(x)

S3 method for class 'call'
as.ini(x)

S3 method for class 'lotriFix'
as.ini(x)

S3 method for class 'matrix'
as.ini(x)

Default S3 method:
as.ini(x)
Arguments

X Item to convert to a rxode2/nlmixr2 ui ini expression

Value

rxode2 ini expression

Author(s)
Matthew L. Fidler

Examples

ini <- quote(ini({
tka <- log(1.57)
tcl <- log(2.72)
tv <- log(31.5)

12

eta.ka ~ 0.6

eta.cl ~ 0.3

eta.v ~ 0.1

add.sd <- 0.7
1))

as.ini(ini)

1 <- quote(lotri({
tka <- log(1.57)
tcl <- log(2.72)
tv <- log(31.5)
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

m

as.ini(l)

m <- lotri({

eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
»
as.ini(m)

one.compartment <- function() {
ini({
tka <- log(1.57)
tcl <- log(2.72)
tv <- log(31.5)

eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
b))
model ({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
d/dt(depot) = -ka * depot
d/dt(center) = ka * depot - cl / v * center
cp = center / v
cp ~ add(add.sd)
D)
3

as.ini(one.compartment)

ui <- one.compartment()

as.ini

as.model

as.ini(ui)
ui$inibf
as.ini(ui$iniDf)
ini <= c("ini({",
"tka <- log(1.57)",

"tcl <- log(2.72)",
"tv <- log(31.5)",

"eta.ka ~ 0.6",
"eta.cl ~ 0.3",
"eta.v ~ 0.1",
"add.sd <- 0.7",
"D

as.ini(ini)
ini <- paste(ini, collapse="\n")

as.ini(ini)

as.model Turn into a model expression

Description

Turn into a model expression
Usage
as.model (x)

S3 method for class 'character'
as.model (x)

S3 method for class 'call'
as.model(x)

S3 method for class 'list'
as.model (x)

Default S3 method:
as.model (x)

Arguments

X item to convert to a model({}) expression

14 as.model

Value

model expression

Author(s)
Matthew L. Fidler

Examples

model <- quote(model ({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
d/dt(depot) = -ka * depot
d/dt(center) = ka * depot - cl / v * center
cp = center / v
cp ~ add(add.sd)
1))

as.model (model)

one.compartment <- function() {

ini({
tka <- log(1.57)
tcl <- log(2.72)
tv <- log(31.5)
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

D)

model ({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
d/dt(depot) = -ka * depot
d/dt(center) = ka * depot - cl / v * center
cp = center / v
cp ~ add(add.sd)

D)

3

as.model (one.compartment)
ui <- one.compartment()
as.model(ui)

model <- c("model({",

"ka <- exp(tka + eta.ka)",
"cl <- exp(tcl + eta.cl)”,

as.rxUi

"v <- exp(tv + eta.v)",

"d/dt(depot) = -ka x depot”,

"d/dt(center) = ka * depot - ¢l / v * center”,
"cp = center / v",

"cp ~ add(add.sd)",

"N

as.model (model)

model <- paste(model, collapse="\n")

as.model (model)

15

as.rxUi

As rxode2 ui

Description

As rxode2 ui

Usage

as.

#i#

as.

##

as.

#it

as.

##

as.

#it

as.

##

as.

rxUi (x)

S3 method for
rxUi(x)

S3 method for
rxUi (x)

S3 method for
rxUi(x)

S3 method for
rxUi (x)

S3 method for
rxUi (x)

class

class

class

class

class

Default S3 method:

rxUi(x)

Arguments

X

'rxode2'

'rxode2tos'’

'rxModelVars'

"“function*'

"rxUi’

Object to convert to rxUi object

16

Value

rxUi object (or error if it cannot be converted)

Author(s)

Matthew L. Fidler

Examples

mod1 <- function() {

ini({
central
KA=2.94E-01
CL=1.86E+01
V2=4.02E+01
peripheral
Q=1.05E+01
V3=2.97E+02
effects
Kin=1
Kout=1
EC50=200

b))

model ({
C2 <- centr/V2
C3 <- peri/V3
d/dt(depot) <- -KAxdepot
d/dt(centr) <- KAxdepot - CL*C2 - Q*C2 + Q*C3
d/dt(peri) <- QxC2 - Q+*C3
eff(0) <- 1
d/dt(eff) <- Kin - Koutx(1-C2/(EC50+C2))*xeff

»

3

as.rxUi(mod1)

assertRxUi

assertRxUi Assert properties of the rxUi models

Description

Assert properties of the rxUi models

assertRxUi 17

Usage
assertRxUi(model, extra = "", .var.name = .vname(model))
assertRxUiPrediction(model, extra = "", .var.name = .vname(model))
assertRxUiSingleEndpoint(model, extra = "", .var.name = .vname(model))
assertRxUiTransformNormal (model, extra = "", .var.name = .vname(model))
assertRxUiNormal(model, extra = "", .var.name = .vname(model))
assertRxUiMuRefOnly(model, extra = "", .var.name = .vname(model))
assertRxUiEstimatedResiduals(model, extra = "", .var.name = .vname(model))
assertRxUiPopulationOnly(model, extra = "", .var.name = .vname(model))
assertRxUiMixedOnly(model, extra = "", .var.name = .vname(model))
assertRxUiRandomOnIdOnly(model, extra = "", .var.name = .vname(model))
Arguments
model Model to check
extra Extra text to append to the error message (like "for focei")
.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.
Details

These functions have different types of assertions

* assertRxUi — Make sure this is a proper rxode2 model (if not throw error)

* assertRxUiSingleEndpoint — Make sure the rxode2 model is only a single endpoint model
(if not throw error)

e assertRxUiTransformNormal — Make sure that the model residual distribution is normal or
transformably normal

¢ assertRxUiNormal — Make sure that the model residual distribution is normal

* assertRxUiEstimatedResiduals — Make sure that the residual error parameters are esti-
mated (not modeled).

* assertRxUiPopulationOnly — Make sure the model is the population only model (no mixed
effects)

* assertRxUiMixedOnly — Make sure the model is a mixed effect model (not a population
effect, only)

* assertRxUiPrediction — Make sure the model has predictions

18 binomProbs

e assertRxUiMuRefOnly — Make sure that all the parameters are mu-referenced

* assertRxUiRandomOnIdOnly — Make sure there are only random effects at the ID level

Value

the rxUi model

Author(s)
Matthew L. Fidler

Examples

one.cmt <- function() {
ini({
tka <- 0.45; label("Ka")
tcl <- log(c(@, 2.7, 100)); label("Cl")
tv <- 3.45; label("V")

eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
»
model ({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)
D
3

assertRxUi(one.cmt)
assertRxUi(rnorm) # will fail

assertRxUiSingleEndpoint(one.cmt)

binomProbs Calculate expected confidence bands with binomial sampling distribu-
tion

Description

This is meant to perform in the same way as quantile() so it can be a drop in replacement for
code using quantile() but using distributional assumptions.

binomProbs

Usage

binomProbs(x,

19

.2

Default S3 method:

binomProbs(
X ’
probs = c(0.025, 0.05, 0.5, 0.95, 0.975),
na.rm = FALSE,
names = TRUE,
onlyProbs = TRUE,
n=oL,
m = oL,
pred = FALSE,
piMethod = c("lim"),
M = 5e+05,
tol = .Machine$double.eps”0.25,
ciMethod = c("wilson”, "wilsonCorrect”, "agrestiCoull”, "wald", "wc", "ac"),
)
Arguments

X numeric vector whose mean and probability based confidence values are wanted,
NA and NaN values are not allowed in numeric vectors unless na. rm is TRUE.
Arguments passed to default method, allows many different methods to be ap-
plied.

probs numeric vector of probabilities with values in the interval O to 1, inclusive. When
0, it represents the maximum observed, when 1, it represents the maximum
observed. When 0.5 it represents the expected probability (mean).

na.rm logical; if true, any NA and NaN’s are removed from x before the quantiles are
computed.

names logical; if true, the result has a names attribute.

onlyProbs logical; if true, only return the probability based confidence interval/prediction
interval estimates, otherwise return extra statistics.

n integer/integerish; this is the n used to calculate the prediction or confidence
interval. When n=0 (default) use the number of non-NA observations. When
calculating the prediction interval, this represents the number of observations
used in the input ("true") distribution.

m integer. When using the prediction interval this represents the number of sam-
ples that will be observed in the future for the prediction interval.

pred Use a prediction interval instead of a confidence interval. By default this is
FALSE.

piMethod gives the prediction interval method (currently only lim) from Lu 2020

M number of simulations to run for the LIM PI.

tol tolerance of root finding in the LIM prediction interval

20 binomProbs

ciMethod gives the method for calculating the confidence interval.
Can be:

e "argestiCoull" or "ac" — Agresti-Coull method. For a 95\ interval, this
method does not use the concept of "adding 2 successes and 2 failures,"
but rather uses the formulas explicitly described in the following link:

https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Agresti-
Coull_Interval.

* "wilson" — Wilson Method
* "wilsonCorrect" or "wc" — Wilson method with continuity correction
* "wald" — Wald confidence interval or standard z approximation.

Details

It is used for confidence intervals with rxode2 solved objects using confint(mean="binom")

Value

By default the return has the probabilities as names (if named) with the points where the expected
distribution are located given the sampling mean and standard deviation. If onlyProbs=FALSE then
it would prepend mean, variance, standard deviation, minimum, maximum and number of non-NA
observations.

Author(s)
Matthew L. Fidler

References

* Newcombe, R. G. (1998). "Two-sided confidence intervals for the single proportion: compar-
ison of seven methods". Statistics in Medicine. 17 (8): 857-872. doi:10.1002/(SICI)1097-
0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E. PMID 9595616.

» Hezhi Lu, Hua Jin, A new prediction interval for binomial random variable based on inferen-
tial models, Journal of Statistical Planning and Inference, Volume 205, 2020, Pages 156-174,
ISSN 0378-3758, https://doi.org/10.1016/j.jspi.2019.07.001.

Examples

x<- rbinom(7001, p=0.375, size=1)
binomProbs(x)

you can also use the prediction interval
binomProbs(x, pred=TRUE)

Can get some extra statistics if you request onlyProbs=FALSE
binomProbs(x, onlyProbs=FALSE)

erf

x[2] <- NA_real_
binomProbs(x, onlyProbs=FALSE)

binomProbs(x, na.rm=TRUE)

erf Error function

Description

Error function

Usage
erf(x)

Arguments

X vector or real values

Value

erf of x

Author(s)
Matthew L. Fidler

Examples

erf(1.0)

gammap Gammap: normalized lower incomplete gamma function

Description

This is the gamma_p from the boost library

Usage

gammap(a, z)

22 gammapDer

Arguments
a The numeric *a’ parameter in the normalized lower incomplete gamma
z The numeric ’z’ parameter in the normalized lower incomplete gamma
Details

The gamma p function is given by:

gammap = lowergamma(a, z)/gamma(a)

Value

gammap results

Author(s)
Matthew L. Fidler

Examples

gammap(1, 3)
gammap(1:3, 3)
gammap(1, 1:3)

gammapDer gammapDer: derivative of gammap

Description

This is the gamma_p_derivative from the boost library

Usage

gammapDer (a, z)

Arguments
a The numeric ’a’ parameter in the upper incomplete gamma
z The numeric ’z’ parameter in the upper incomplete gamma
Value

lowergamma results

Author(s)
Matthew L. Fidler

gammaplnv 23

Examples

gammapDer(1:3, 3)

gammapDer (1, 1:3)

gammapInv gammaplInv and gammaplInva: Inverses of normalized gammap func-
tion

Description

gammaplnv and gammaplnva: Inverses of normalized gammap function

Usage

gammapInv(a, p)

gammapInva(x, p)

Arguments
a The numeric ’a’ parameter in the upper incomplete gamma
p The numeric ’p’ parameter in the upper incomplete gamma
X The numeric ’x’ parameter in the upper incomplete gamma
Details
With the equation:

p = gammap(a, X)
The *gammaplnv’ function returns a value ’x’ that satisfies the equation above
The gammaplnva’ function returns a value ’q’ that satisfies the equation above

NOTE: gammaplnva is slow

Value

inverse gammap results

Author(s)

Matthew L. Fidler

24 gammaq

Examples

gammapInv(1:3, 0.5)
gammapInv(l, 1:3 / 3.1)
gammapInv(1:3, 1:3 / 3.1)

gammapInva(1:3, 1:3 / 3.1)

gammaq Gammagq: normalized upper incomplete gamma function

Description

This is the gamma_q from the boost library

Usage

gammaq(a, z)

Arguments
a The numeric ’a’ parameter in the normalized upper incomplete gamma
z The numeric ’z’ parameter in the normalized upper incomplete gamma
Details

The gamma q function is given by:

gammagq = uppergammag(a, z)/gamma(a)

Value

gammagq results

Author(s)
Matthew L. Fidler

Examples

gammaq(1, 3)
gammaq(1:3, 3)
gammaq(1, 1:3)

gammagqlnv 25

gammaglnv gammagqlnv and gammaglnva: Inverses of normalized gammaq func-
tion

Description

gammaqInv and gammagqlnva: Inverses of normalized gammagq function

Usage

gammagInv(a, q)

gammaglInva(x, q)

Arguments
a The numeric ’a’ parameter in the upper incomplete gamma
q The numeric ’q’ parameter in the upper incomplete gamma
X The numeric ’x’ parameter in the upper incomplete gamma
Details

With the equation:

q = gammaq(a, X)

The *gammaqInv’ function returns a value ’x’ that satisfies the equation above
The *gammagqlnva’ function returns a value ’a’ that satisfies the equation above

NOTE: gammaqlnva is slow

Value

inverse gammag results

Author(s)
Matthew L. Fidler

Examples

gammagInv(1:3, 0.5)
gammagInv(1l, 1:3 / 3)
gammagInv(1:3, 1:3 / 3.1)

gammagInva(1:3, 1:3 / 3.1)

26 genShinyApp.template

genShinyApp.template Generate an example (template) of a dosing regimen shiny app

Description

Create a complete shiny application for exploring dosing regimens given a (hardcoded) PK/PD
model.

Usage

genShinyApp.template(
appDir = "shinyExample”,
verbose = TRUE,
ODE.config = list(ode = "model”, params = c(KA = 0.294), inits = c(eff = 1), method =
"lsoda”, atol = 1e-08, rtol = 1e-06)
)

write.template.server(appDir)
write.template.ui(appDir, statevars)

Arguments

appDir a string with a directory where to store the shiny app, by default is "shinyExample”.
The directory appDir will be created if it does not exist.

verbose logical specifying whether to write messages as the shiny app is generated. De-
faults to TRUE.

ODE.config model name compiled and list of parameters sent to rxSolve().
statevars List of statevars passed to to the write.template.ui() function. This usually
isn’t called directly.

A PK/PD model is defined using rxode2(), and a set of parameters and initial
values are defined. Then the appropriate R scripts for the shiny’s user interface
ui.R and the server logic server.R are created in the directory appDir.

The function evaluates the following PK/PD model by default:
C2 = centr/V2;
C3 = peri/V3;
d/dt(depot) =-KA*depot;
d/dt(centr) = KAxdepot - CL*C2 - Q*C2 + Q*C3;
d/dt(peri) = Q*C2 - QxC3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))=*eff;

This can be changed by the ODE . config parameter.

To launch the shiny app, simply issue the runApp (appDir) R command.

Value

None, these functions are used for their side effects.

getRxThreads 27

Note

These functions create a simple, but working example of a dosing regimen simulation web applica-
tion. Users may want to modify the code to experiment creating shiny applications for their specific
rxode2 models.

See Also

rxode2(),eventTable(), and the package shiny (https://shiny.posit.co).
Examples

remove myapp when the example is complete
on.exit(unlink("myapp"”, recursive = TRUE, force = TRUE))
create the shiny app example (template)
genShinyApp. template(appDir = "myapp”)
run the shiny app
if (requireNamespace("shiny”, quietly=TRUE)) {
library(shiny)
runApp("myapp”) # Won't launch in environments without browsers

}

getRxThreads Get/Set the number of threads that rxode2 uses

Description

Get/Set the number of threads that rxode2 uses

Usage

getRxThreads(verbose = FALSE)

setRxThreads(threads

NULL, percent = NULL, throttle = NULL)

rxCores(verbose = FALSE)

Arguments
verbose Display the value of relevant OpenMP settings
threads NULL (default) rereads environment variables. 0 means to use all logical CPUs
available. Otherwise a number >= 1
percent If provided it should be a number between 2 and 100; the percentage of logical

CPUs to use. By default on startup, 50 percent.

https://shiny.posit.co

28

throttle

Value

ini.rxUi

2 (default) means that, roughly speaking, a single thread will be used when
number subjects solved for is <=2, 2 threads when the number of all points is
<=4, etc. The throttle is to speed up small data tasks (especially when repeated
many times) by not incurring the overhead of managing multiple threads.

The throttle will also suppress sorting which ID will be solved first when there
are (nsubject solved)*throttle <= nthreads. In rxode2 this sorting occurs to min-
imize the time for waiting for another thread to finish. If the last item solved is
has a long solving time, all the other solving have to wait for that last costly
solving to occur. If the items which are likely to take more time are solved first,
this wait is less likely to have an impact on the overall solving time.

In rxode?2 the IDs are sorted by the individual number of solving points (largest
first). It also has a C interface that allows these IDs to be resorted by total time
spent solving the equation. This allows packages like nlmixr to sort by solving
time if needed.

Overall the the number of threads is throttled (restricted) for small tasks and
sorting for IDs are suppressed.

number of threads that rxode2 uses

ini.rxUi

Ini block for rxode2/nlmixr models

Description

The ini block controls initial conditions for ’theta’ (fixed effects), ’omega’ (random effects), and
’sigma’ (residual error) elements of the model.

Usage

S3 method for class 'rxUi'

ini(x,

L]

Default S3 method:

ini(x,
ini(x,

Arguments

X

envir

L]

L]

envir = parent.frame(), append = NULL)
envir = parent.frame(), append = NULL)
envir = parent.frame(), append = NULL)

expression
Other expressions for ini() function

the environment in which unevaluated model expressions is to be evaluated.
May also be NULL, a list, a data frame, a pairlist or an integer as specified to
sys.call.

ini.rxUi 29

append Reorder theta parameters. NULL means no change to parameter order. A param-
eter name (as a character string) means to put the new parameter after the named
parameter. A number less than or equal to zero means to put the parameter at the
beginning of the list. A number greater than the last parameter number means
to put the parameter at the end of the list.

Details

The ini() function is used in two different ways. The main way that it is used is to set the initial
conditions and associated attributes (described below) in a model. The other way that it is used is
for updating the initial conditions in a model, often using the pipe operator.

’theta’ and ’sigma’ can be set using either <- or = such as tvCL <- 1 or equivalently tvCL = 1.
’omega’ can be set with a ~ such as etaCL ~ 0.1.

Parameters can be named or unnamed (though named parameters are preferred). A named parameter
is set using the name on the left of the assignment while unnamed parameters are set without an
assignment operator. tvCL <- 1 would set a named parameter of tvCL to 1. Unnamed parameters
are set using just the value, such as 1.

For some estimation methods, lower and upper bounds can be set for ’theta’ and ’sigma’ values.
To set a lower and/or upper bound, use a vector of values. The vector is c(lower, estimate,
upper). The vector may be given with just the estimate (estimate), the lower bound and estimate
(c(lower, estimate)), or all three (c(lower, estimate,upper)). To set an estimate and upper
bound without a lower bound, set the lower bound to -Inf, c(-Inf, estimate, upper). When an
estimation method does not support bounds, the bounds will be ignored with a warning.

’omega’ values can be set as a single value or as the values of a lower-triangular matrix. The values
may be set as either a variance-covariance matrix (the default) or as a correlation matrix for the off-
diagonals with the standard deviations on the diagonals. Names may be set on the left side of the
~. To set a variance-covariance matrix with variance values of 2 and 3 and a covariance of -2.5 use
~c(2, 2.5,3). To set the same matrix with names of iivKa and iivCL, use iivKa + iivCL~c(2,
2.5, 3). To set a correlation matrix with standard deviations on the diagonal, use cor () like iivKa
+iivCL~cor(2,-0.5, 3).

Values may be fixed (and therefore not estimated) using either the name fixed at the end of the
assignment or by calling fixed() as a function for the value to fix. For ’theta’ and ’sigma’, either
the estimate or the full definition (including lower and upper bounds) may be included in the fixed
setting. For example, the following are all effectively equivalent to set a ’theta’ or ’sigma’ to a
fixed value (because the lower and upper bounds are ignored for a fixed value): tvCL <- fixed(1),
tvCL <-fixed(@, 1), tvCL <- fixed(9Q, 1, 2), tvCL <- c(0@, fixed(1),2), or tvCL <-c(0Q, 1,
fixed). For ’omega’ assignment, the full block or none of the block must be set as fixed. Exam-
ples of setting an ’omega’ value as fixed are: iivKa~fixed(1), iivKa + iivCL~fixed(1, 2, 3),
or iivKa + iivCL~c(1, 2, 3, fixed). Anywhere that fixed is used, FIX, FIXED, or fix may be
used equivalently.

For any value, standard mathematical operators or functions may be used to define the value. For
example, log(2) and 24x30 may be used to define a value anywhere that a number can be used
(e.g. lower bound, estimate, upper bound, variance, etc.).

Values may be labeled using the label() function after the assignment. Labels are are used to
make reporting easier by giving a human-readable description of the parameter, but the labels do
not have any effect on estimation. The typical way to set a label so that the parameter tvCL has a

30 ini.rxUi

label of "Typical Value of Clearance (L/hr)" is tvCL <- 1; label("Typical Value of Clearance
(L/hr)™).

rxode2/nlmixr2 will attempt to determine some back-transformations for the user. For example,
CL <- exp(tvCL) will detect that tvCL must be back-transformed by exp () for easier interpretation.
When you want to control the back-transformation, you can specify the back-transformation using
backTransform() after the assignment. For example, to set the back-transformation to exp (), you
can use tvCL <- 1; backTransform(exp()).

Value

ini block

Author(s)
Matthew Fidler

See Also

Other Initial conditions: zeroRe ()

Examples

Set the ini() block in a model
one.compartment <- function() {
ini({
tka <- log(1.57); label("Ka")
tcl <- log(2.72); label("Cl")
tv <- log(31.5); label("V")

eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
H
model ({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
d/dt(depot) = -ka * depot
d/dt(center) = ka * depot - cl / v * center
cp = center / v
cp ~ add(add.sd)
b))
3

Use piping to update initial conditions

one.compartment %>% ini(tka <- log(2))

one.compartment %>% ini(tka <- label("Absorption rate, Ka (1/hr)"))

Move the tka parameter to be just below the tv parameter (affects parameter

summary table, only)

one.compartment %>% ini(tka <- label("Absorption rate, Ka (1/hr)"), append = "tv")
When programming with rxode2/nlmixr2, it may be easier to pass strings in

to modify the ini

ini<- 31

one.compartment %>% ini("tka <- log(2)")

ini<- Assign the ini block in the rxode?2 related object

Description
Assign the ini block in the rxode?2 related object
Usage

ini(x, envir = environment(x)) <- value

Arguments
X rxode?2 related object
envir Environment where assignment occurs
value Value of the object

Value

rxode? related object

Author(s)

Matthew L. Fidler

11ikBeta Calculate the log likelihood of the binomial function (and its deriva-
tives)

Description

Calculate the log likelihood of the binomial function (and its derivatives)
Usage

1likBeta(x, shapel, shape2, full = FALSE)

Arguments

X Observation
shapel, shape2 non-negative parameters of the Beta distribution.

full Add the data frame showing x, mean, sd as well as the fx and derivatives

32 1likBinom

Details
In an rxode2() model, you can use 11ikBeta() but you have to use all arguments. You can also
get the derivative of shapel and shape2 with 11ikBetaDshape1() and 11ikBetaDshape2().
Value
data frame with fx for the log pdf value of with dShape1 and dShape? that has the derivatives with
respect to the parameters at the observation time-point
Author(s)
Matthew L. Fidler

Examples

x <- seq(le-4, 1 - l1e-4, length.out = 21)
1likBeta(x, 0.5, 0.5)
1likBeta(x, 1, 3, TRUE)

et <- et(seq(le-4, 1-1e-4, length.out=21))
et$shapel <- 0.5
et$shape2 <- 1.5

model <- function() {
model ({
fx <- 1likBeta(time, shapel, shape2)
dShapel <- 1likBetaDshapel(time, shapel, shape2)
dShape2 <- 1likBetaDshape2(time, shapel, shape2)
b))
3

rxSolve(model, et)

11ikBinom Calculate the log likelihood of the binomial function (and its deriva-
tives)

Description

Calculate the log likelihood of the binomial function (and its derivatives)

Usage
11ikBinom(x, size, prob, full = FALSE)

llikBinom 33

Arguments

X Number of successes

size Size of trial

prob probability of success

full Add the data frame showing x, mean, sd as well as the fx and derivatives
Details

In an rxode2() model, you can use 11ikBinom() but you have to use all arguments. You can also
get the derivative of prob with 11ikBinomDprob()

Value

data frame with fx for the pdf value of with dProb that has the derivatives with respect to the
parameters at the observation time-point

Author(s)

Matthew L. Fidler

Examples

11ikBinom(46:54, 100, 0.5)
11ikBinom(46:54, 100, ©.5, TRUE)
In rxode2 you can use:

et <- et(46:54)
et$size <- 100
et$prob <-0.5

model <- function() {
model ({
fx <- 1likBinom(time, size, prob)
dProb <- 11ikBinomDprob(time, size, prob)
b))
3

rxSolve(model, et)

34 llikCauchy

11ikCauchy log likelihood of Cauchy distribution and it’s derivatives (from stan)

Description

log likelihood of Cauchy distribution and it’s derivatives (from stan)

Usage
1likCauchy(x, location = @, scale = 1, full = FALSE)

Arguments

X Observation
location, scale

location and scale parameters.

full Add the data frame showing x, mean, sd as well as the fx and derivatives

Details
In an rxode2 () model, you can use 11ikCauchy () but you have to use all arguments. You can also
get the derivative of location and scale with 11ikCauchyDlocation() and 11ikCauchyDscale().
Value
data frame with fx for the log pdf value of with dLocation and dScale that has the derivatives with
respect to the parameters at the observation time-point
Author(s)
Matthew L. Fidler

Examples

x <- seq(-3, 3, length.out = 21)
1likCauchy(x, 0, 1)
11ikCauchy(x, 3, 1, full=TRUE)

et <- et(-3, 3, length.out=10)
et$location <- @
et$scale <- 1

model <- function() {
model ({
fx <- 1likCauchy(time, location, scale)
dLocation <- 1llikCauchyDlocation(time, location, scale)

llikChisq 35

dScale <- 1llikCauchyDscale(time, location, scale)
H
3

rxSolve(model, et)

11ikChisq log likelihood and derivatives for chi-squared distribution

Description

log likelihood and derivatives for chi-squared distribution

Usage
11ikChisq(x, df, full = FALSE)

Arguments

X variable that is distributed by chi-squared distribution

df degrees of freedom (non-negative, but can be non-integer).

full Add the data frame showing x, mean, sd as well as the fx and derivatives
Details

In an rxode2 () model, you can use 11ikChisq() but you have to use the x and df arguments. You
can also get the derivative of df with 11ikChisgDdf ().

Value

data frame with fx for the log pdf value of with dDf that has the derivatives with respect to the df
parameter the observation time-point

Author(s)
Matthew L. Fidler

Examples

11ikChisq(1, df = 1:3, full=TRUE)

11ikChisq(1, df = 6:9)

et <- et(1:3)
et$x <- 1

36 llikExp

model <- function() {
model ({
fx <- 11ikChisq(x, time)
dDf <- 11likChisqgDdf(x, time)
b))

3

rxSolve(model, et)

11ikExp log likelihood and derivatives for exponential distribution

Description

log likelihood and derivatives for exponential distribution

Usage

11ikExp(x, rate, full = FALSE)

Arguments

X variable that is distributed by exponential distribution

rate vector of rates.

full Add the data frame showing x, mean, sd as well as the fx and derivatives
Details

In an rxode2() model, you can use 11ikExp() but you have to use the x and rate arguments. You
can also get the derivative of rate with 11ikExpDrate().

Value

data frame with fx for the log pdf value of with dRate that has the derivatives with respect to the
rate parameter the observation time-point

Author(s)

Matthew L. Fidler

IlikF

Examples

11ikExp(1, 1:3)
11ikExp(1, 1:3, full=TRUE)
You can use rxode2 for these too:

et <- et(1:3)
et$x <- 1

model <- function() {
model ({
fx <- 11likExp(x, time)
dRate <- 1likExpDrate(x, time)
D)
3

rxSolve(model, et)

37

11ikF log likelihood and derivatives for F distribution

Description

log likelihood and derivatives for F distribution

Usage
11ikF(x, df1, df2, full = FALSE)

Arguments

X variable that is distributed by f distribution

df1, df2 degrees of freedom. Inf is allowed.

full Add the data frame showing x, mean, sd as well as the fx and derivatives
Details

In an rxode2 () model, you can use 11ikF () but you have to use the x and rate arguments. You can

also get the derivative of df1 and df2 with 11ikFDdf1() and 11ikFDdf2().

Value

data frame with fx for the log pdf value of with dDf1 and dDf2 that has the derivatives with respect

to the df1/df2 parameters at the observation time-point

38 llikGamma

Author(s)
Matthew L. Fidler

Examples

x <- seq(0.001, 5, length.out = 100)
11ikF(x*2, 1, 5)

model <- function(){
model ({
fx <- 11likF(time, df1, df2)
dMean <- 11ikFDdf1(time, df1, df2)
dSd <- 11ikFDdf2(time, df1, df2)
b))
3

et <- et(x)
et$df1 <- 1
et$df2 <- 5

rxSolve(model, et)

11ikGamma log likelihood and derivatives for Gamma distribution

Description

log likelihood and derivatives for Gamma distribution

Usage
1likGamma(x, shape, rate, full = FALSE)

Arguments

X variable that is distributed by gamma distribution

shape this is the distribution’s shape parameter. Must be positive.

rate this is the distribution’s rate parameters. Must be positive.

full Add the data frame showing x, mean, sd as well as the fx and derivatives
Details

In an rxode2 () model, you can use 11ikGamma() but you have to use the x and rate arguments. You
can also get the derivative of shape or rate with 11ikGammaDshape() and 11ikGammaDrate().

1likGeom 39

Value
data frame with fx for the log pdf value of with dProb that has the derivatives with respect to the
prob parameters at the observation time-point

Author(s)
Matthew L. Fidler

Examples

1likGamma(1, 1, 10)
You can use this in ‘rxode2‘ too:

et <- et(seq(0.001, 1, length.out=10))
et$shape <- 1
et$rate <- 10

model <- function() {
model ({
fx <- 1likGamma(time, shape, rate)
dShape<- 1likGammaDshape(time, shape, rate)
dRate <- 1likGammaDrate(time, shape, rate)
D)
3

rxSolve(model, et)

11ikGeom log likelihood and derivatives for Geom distribution

Description

log likelihood and derivatives for Geom distribution

Usage
11ikGeom(x, prob, full = FALSE)

Arguments
X variable distributed by a geom distribution
prob probability of success in each trial. @ < prob <= 1.

full Add the data frame showing x, mean, sd as well as the fx and derivatives

40 1likNbinom

Details

In an rxode2() model, you can use 11ikGeom() but you have to use the x and rate arguments. You
can also get the derivative of prob with 11ikGeomDprob().

Value

data frame with fx for the log pdf value of with dProb that has the derivatives with respect to the
prob parameters at the observation time-point

Author(s)

Matthew L. Fidler

Examples

11ikGeom(1:10, @.2)

et <- et(1:10)
et$prob <- 0.2

model <- function() {
model ({
fx <- 1likGeom(time, prob)
dProb <- 1likGeomDprob(time, prob)
D)
}

rxSolve(model, et)

11ikNbinom Calculate the log likelihood of the negative binomial function (and its
derivatives)

Description

Calculate the log likelihood of the negative binomial function (and its derivatives)

Usage

11ikNbinom(x, size, prob, full = FALSE)

1likNbinom 41

Arguments

X Number of successes

size Size of trial

prob probability of success

full Add the data frame showing x, mean, sd as well as the fx and derivatives
Details

In an rxode2() model, you can use 11ikNbinom() but you have to use all arguments. You can also
get the derivative of prob with 11ikNbinomDprob()

Value

data frame with fx for the pdf value of with dProb that has the derivatives with respect to the
parameters at the observation time-point

Author(s)

Matthew L. Fidler

Examples

11ikNbinom(46:54, 100, 0.5)
11ikNbinom(46:54, 100, ©.5, TRUE)
In rxode2 you can use:

et <- et(46:54)
et$size <- 100
et$prob <-0.5

model <- function() {
model ({
fx <- 1likNbinom(time, size, prob)
dProb <- 11ikNbinomDprob(time, size, prob)
D
3

rxSolve(model, et)

42 1likNbinomMu

11ikNbinomMu Calculate the log likelihood of the negative binomial function (and its
derivatives)

Description

Calculate the log likelihood of the negative binomial function (and its derivatives)

Usage
11ikNbinomMu(x, size, mu, full = FALSE)

Arguments

X Number of successes

size Size of trial

mu mu parameter for negative binomial

full Add the data frame showing x, mean, sd as well as the fx and derivatives
Details

In an rxode2() model, you can use 11ikNbinomMu() but you have to use all arguments. You can
also get the derivative of mu with 11ikNbinomMuDmu()

Value

data frame with fx for the pdf value of with dProb that has the derivatives with respect to the
parameters at the observation time-point

Author(s)
Matthew L. Fidler

Examples

11ikNbinomMu(46:54, 100, 40)
11ikNbinomMu(46:54, 100, 40, TRUE)

et <- et(46:54)
et$size <- 100
et$mu <- 40

model <- function() {
model ({
fx <- 11likNbinomMu(time, size, mu)
dProb <- 1likNbinomMuDmu(time, size, mu)

1likNorm 43

»
}

rxSolve(model, et)

11ikNorm Log likelihood for normal distribution

Description

Log likelihood for normal distribution

Usage
11ikNorm(x, mean = @, sd = 1, full = FALSE)

Arguments

X Observation

mean Mean for the likelihood

sd Standard deviation for the likelihood

full Add the data frame showing x, mean, sd as well as the fx and derivatives
Details

In an rxode2() model, you can use 11ikNorm() but you have to use all arguments. You can also
get the derivatives with 11ikNormDmean() and 11ikNormDsd()

Value

data frame with fx for the pdf value of with dMean and dSd that has the derivatives with respect to
the parameters at the observation time-point

Author(s)
Matthew L. Fidler

Examples

11ikNorm(@)
11ikNorm(seq(-2,2,length.out=10), full=TRUE)

With rxode2 you can use:

44 llikPois
et <- et(-3, 3, length.out=10)
et$mu <- @
et$sigma <- 1
model <- function(){
model ({
fx <- 11likNorm(time, mu, sigma)
dMean <- 1likNormDmean(time, mu, sigma)
dSd <- 11ikNormDsd(time, mu, sigma)
D)
}
ret <- rxSolve(model, et)
ret
11ikPois log-likelihood for the Poisson distribution
Description
log-likelihood for the Poisson distribution
Usage
11ikPois(x, lambda, full = FALSE)
Arguments
X non negative integers
lambda non-negative means
full Add the data frame showing x, mean, sd as well as the fx and derivatives
Details

In an rxode2() model, you can use 11ikPois() but you have to use all arguments. You can also

get the derivatives with 11ikPoisDlambda()

Value

data frame with fx for the pdf value of with dLambda that has the derivatives with respect to the

parameters at the observation time-point

Author(s)
Matthew L. Fidler

IikT

Examples

11ikPois(@:7, lambda

45

»

11ikPois(@:7, lambda = 4, full=TRUE)

In rxode2 you can use:

et <- et(0:10)
et$lambda <- 0.5

model <- function() {

model ({

fx <- 1likPois(time, lambda)
dLambda <- 1likPoisDlambda(time, lambda)

D
}

rxSolve(model, et)

11ikT

Log likelihood of T and it’s derivatives (from stan)

Description

Log likelihood of T and it’s derivatives (from stan)

Usage

11ikT(x, df, mean = @, sd = 1, full = FALSE)

Arguments

X
df
mean
sd
full

Details

Observation

degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.
Mean for the likelihood

Standard deviation for the likelihood

Add the data frame showing x, mean, sd as well as the fx and derivatives

In an rxode2() model, you can use 11ikT () but you have to use all arguments. You can also get
the derivative of df, mean and sd with 11ikTDdf (), 11ikTDmean() and 11ikTDsd().

Value

data frame with fx for the log pdf value of with dDf dMean and dSd that has the derivatives with
respect to the parameters at the observation time-point

46 HikUnif

Author(s)
Matthew L. Fidler

Examples

x <- seq(-3, 3, length.out = 21)
11ikT(x, 7, @, 1)
11ikT(x, 15, @, 1, full=TRUE)

et <- et(-3, 3, length.out=10)

et$nu <- 7
et$mean <- 0@
et$sd <- 1

model <- function() {
model ({
fx <= 11ikT(time, nu, mean, sd)
dDf <- 11ikTDdf(time, nu, mean, sd)
dMean <- 1likTDmean(time, nu, mean, sd)
dSd <- 11ikTDsd(time, nu, mean, sd)
b))
3

rxSolve(model, et)

11ikUnif log likelihood and derivatives for Unif distribution

Description

log likelihood and derivatives for Unif distribution

Usage
11likUnif(x, alpha, beta, full = FALSE)

Arguments
X variable distributed by a uniform distribution
alpha is the lower limit of the uniform distribution
beta is the upper limit of the distribution

full Add the data frame showing x, mean, sd as well as the fx and derivatives

llikWeibull 47

Details

In an rxode2 () model, you can use 11ikUnif () but you have to use the x and rate arguments. You
can also get the derivative of alpha or beta with 11ikUnifDalpha() and 11ikUnifDbeta().

Value

data frame with fx for the log pdf value of with dProb that has the derivatives with respect to the
prob parameters at the observation time-point

Author(s)
Matthew L. Fidler

Examples

11ikunif(1, -2, 2)

et <- et(seq(1,1, length.out=4))
et$alpha <- -2
et$beta <- 2

model <- function() {
model ({
fx <- 1likUnif(time, alpha, beta)
dAlpha<- 1likUnifDalpha(time, alpha, beta)
dBeta <- 1likUnifDbeta(time, alpha, beta)
D)
3

rxSolve(model, et)

11ikWeibull log likelihood and derivatives for Weibull distribution

Description

log likelihood and derivatives for Weibull distribution

Usage

11ikWeibull(x, shape, scale, full = FALSE)

48 logit

Arguments

X variable distributed by a Weibull distribution

shape, scale shape and scale parameters, the latter defaulting to 1.

full Add the data frame showing x, mean, sd as well as the fx and derivatives
Details

In an rxode2() model, you can use 11ikWeibull() but you have to use the x and rate arguments.

You can also get the derivative of shape or scale with 11ikWeibullDshape() and 11ikWeibullDscale().
Value

data frame with fx for the log pdf value of with dProb that has the derivatives with respect to the

prob parameters at the observation time-point
Author(s)

Matthew L. Fidler

Examples

11likWeibull(1, 1, 10)
rxode2 can use this too:

et <- et(seq(@.001, 1, length.out=10))
et$shape <- 1
et$scale <- 10

model <- function() {
model ({
fx <- 1likWeibull(time, shape, scale)
dShape<- 1likWeibullDshape(time, shape, scale)
dScale <- 1likWeibullDscale(time, shape, scale)
1))
}

rxSolve(model, et)

logit logit and inverse logit (expit) functions

Description

logit and inverse logit (expit) functions

logit 49

Usage
logit(x, low = @, high = 1)

expit(alpha, low = @, high = 1)

logitNormInfo(mean = @, sd = 1, low = @, high = 1, abs.tol = 1e-06, ...)

probitNormInfo(mean = @, sd = 1, low = @, high = 1, abs.tol = 1e-06, ...)
Arguments

X Input value(s) in range [low,high] to translate -Inf to Inf

low Lowest value in the range

high Highest value in the range

alpha Infinite value(s) to translate to range of [low, high]

mean logit-scale mean

sd logit-scale standard deviation

abs.tol absolute accuracy requested.

other parameters passed to integrate()

Details

logit is given by:

logit(p) = -log(1/p-1)

where:

p = x-low/high-low

expit is given by:

expit(p, low, high) = (high-low)/(1+exp(-alpha)) + low

The logitNormInfo() gives the mean, variance and coefficient of variability on the untransformed
scale.

Value

values from logit and expit

Examples

logit(@.25)
expit(-1.09)
logitNormInfo(logit(@.25), sd = 0.1)

logitNormInfo(logit(1, @, 10), sd = 1, low = @, high = 10)

50 lowergamma

lowergamma lowergamma: upper incomplete gamma function

Description

This is the tgamma_lower from the boost library

Usage

lowergamma(a, z)

Arguments
a The numeric ’a’ parameter in the upper incomplete gamma
z The numeric ’z’ parameter in the upper incomplete gamma
Details

The lowergamma function is given by:
z
lowergammal(a, z) = / to= e tdt
0

Value

lowergamma results

Author(s)

Matthew L. Fidler

Examples

lowergamma(1, 3)
lowergamma(1:3, 3)

lowergamma(1, 1:3)

meanProbs 51

meanProbs Calculate expected confidence bands or prediction intreval with nor-
mal or t sampling distribution

Description

The generic function meanProbs produces expected confidence bands under either the t distribu-
tion or the normal sampling distribution. This uses gnorm() or qt() with the mean and standard
deviation.

Usage

meanProbs(x, ...)

Default S3 method:

meanProbs (
X,
probs = seq(@, 1, 0.25),
na.rm = FALSE,
names = TRUE,
useT = TRUE,
onlyProbs = TRUE,
pred = FALSE,
n = 0oL,
)
Arguments
X numeric vector whose mean and probability based confidence values are wanted,
NA and NaN values are not allowed in numeric vectors unless ‘na.rm’ is “TRUE’.
Arguments passed to default method, allows many different methods to be ap-
plied.
probs numeric vector of probabilities with values in the interval from O to 1 .
na.rm logical; if true, any NA and NaN'’s are removed from x before the quantiles are
computed.
names logical; if true, the result has a names attribute.
useT logical; if true, use the t-distribution to calculate the confidence-based estimates.
If false use the normal distribution to calculate the confidence based estimates.
onlyProbs logical; if true, only return the probability based confidence interval estimates,
otherwise return
pred logical; if true use the prediction interval instead of the confidence interval
n integer/integerish; this is the n used to calculate the prediction or confidence

interval. When n=0 (default) use the number of non-NA observations.

52 meanProbs

Details
For a single probability, p, it uses either:
mean + qt(p, df=n)*sd/sqrt(n)
or
mean + gnorm(p)*sd/sqrt(n)

The smallest observation corresponds to a probability of 0 and the largest to a probability of 1 and
the mean corresponds to 0.5.

The mean and standard deviation of the sample is calculated based on Welford’s method for a single
pass.

This is meant to perform in the same way as quantile() so it can be a drop in replacement for
code using quantile() but using distributional assumptions.

Value

By default the return has the probabilities as names (if named) with the points where the expected
distribution are located given the sampling mean and standard deviation. If onlyProbs=FALSE then
it would prepend mean, variance, standard deviation, minimum, maximum and number of non-NA
observations.

Author(s)

Matthew L. Fidler

Examples

quantile(x<- rnorm(1001))
meanProbs(x)

Can get some extra statistics if you request onlyProbs=FALSE
meanProbs(x, onlyProbs=FALSE)

x[2] <- NA_real_
meanProbs(x, onlyProbs=FALSE)
quantile(x<- rnorm(42))
meanProbs (x)

meanProbs(x, useT=FALSE)

model.function 53

model. function Model block for rxode2/nlmixr models

Description

Model block for rxode2/nlmixr models

Usage

S3 method for class '‘function''
model (
X’

append = NULL,

auto = getOption("rxode2.autoVarPiping"”, TRUE),
cov = NULL,

envir = parent.frame()

)

S3 method for class 'rxUi'
model (
X’

append = NULL,

auto = getOption("rxode2.autoVarPiping"”, TRUE),
cov = NULL,

envir = parent.frame()

)

S3 method for class 'rxode2'
model (
X,

append = NULL,

auto = getOption("rxode2.autoVarPiping"”, TRUE),
cov = NULL,

envir = parent.frame()

)

S3 method for class 'rxModelVars'
model (
X,

append = NULL,

auto = getOption("rxode2.autoVarPiping”, TRUE),
cov = NULL,

envir = parent.frame()

54

)

model (
X7

model.function

append = FALSE,
auto = getOption("rxode2.autoVarPiping”, TRUE),

cov = NULL,

envir = parent.frame()

)

Default S3 method:
model(x, ..., append = FALSE, cov = NULL, envir = parent.frame())

Arguments

X

append

auto

cov

envir

Value

model expression
Other arguments

This is a boolean to determine if the lines are appended in piping. The possible
values for this is:

* TRUE which is when the lines are appended to the model instead of replaced
* FALSE when the lines are replaced in the model (default)
* NA is when the lines are pre-pended to the model instead of replaced

* lhs expression, which will append the lines after the last observed line
of the expression lhs

This boolean tells if piping automatically selects the parameters should be char-
acterized as a population parameter, between subject variability, or a covariate.
When TRUE this automatic selection occurs. When FALSE this automatic selec-
tion is turned off and everything is added as a covariate (which can be promoted
to a parameter with the ini statement). By default this is TRUE, but it can be
changed by options(rxode2.autoVarPiping=FALSE).

is a character vector of variables that should be assumed to be covariates. This
will override automatic promotion to a population parameter estimate (or an eta)

the environment in which unevaluated model expressions is to be evaluated.
May also be NULL, a list, a data frame, a pairlist or an integer as specified to
sys.call.

Model block with ini information included. ini must be called before model block

Author(s)
Matthew Fidler

model<-

model<- Assign the model block in the rxode? related object

Description

Assign the model block in the rxode?2 related object

Usage

model(x, envir = environment(x)) <- value

Arguments
X rxode? related object
envir Environment where assignment occurs
value Value of the object

Value

rxode? related object

Author(s)
Matthew L. Fidler

modelExtract Extract model lines from a rxui model

Description

Extract model lines from a rxui model

Usage

modelExtract(
X)
expression = FALSE,
endpoint = FALSE,
lines = FALSE,
envir = parent.frame()

)

S3 method for class '‘function''
modelExtract(

56

X’

expression = FALSE,
endpoint = FALSE,
lines = FALSE,

envir = parent.frame()

)

S3 method for class 'rxUi'
modelExtract(
X,
expression = FALSE,
endpoint = FALSE,
lines = FALSE,
envir = parent.frame()

)

S3 method for class 'rxode2'
modelExtract(

X,

expression = FALSE,

endpoint = FALSE,

lines = FALSE,

envir = parent.frame()

)

S3 method for class 'rxModelVars'

modelExtract(
X,
expression = FALSE,
endpoint = FALSE,
lines = FALSE,
envir = parent.frame()

)

Default S3 method:
modelExtract(
X,
expression = FALSE,
endpoint = FALSE,
lines = FALSE,
envir = parent.frame()

modelExtract

modelExtract

Arguments

X

expression

endpoint

lines

envir

Value

57

model to extract lines from

variables to extract. When it is missing, it will extract the entire model (condi-
tioned on the endpoint option below)

return expressions (if TRUE) or strings (if FALSE)

include endpoint. This can be:
* NA — Missing means include both the endpoint and non-endpoint lines
* TRUE — Only include endpoint lines
* FALSE — Only include non-endpoint lines

is a boolean. When TRUE this will add the lines as an attribute to the output value
ie attr(, "lines")

Environment for evaluating variables

expressions or strings of extracted lines. Note if there is a duplicated lhs expression in the line, it
will return both lines

Author(s)
Matthew L. Fidler

Examples

one.compartment <

ini({

- function() {

tka <- 0.45 # Log Ka
tcl <- 1 # Log Cl

tv <- 3.45
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
b))
model ({

ka <- exp(tka
cl <- exp(tcl
v <- exp(tv
d/dt(depot)
d/dt(center)
cp <- center
cp ~ add(add.

D)

}

f <- one.compart

modelExtract(f,

Log V

+ eta.ka)

+ eta.cl)

+ eta.v)

<- -ka * depot

<- ka * depot - cl / v x center
/v

sd)

ment()

cp)

58 odeMethodTolnt

modelExtract(one.compartment, d/dt(depot))

from variable
var <- "d/dt(depot)”

modelExtract(one.compartment, var)

modelExtract(f, endpoint=NA, lines=TRUE, expression=TRUE)

odeMethodToInt Conversion between character and integer ODE integration methods
for rxode?2

Description

If NULL is given as the method, all choices are returned as a named vector.

Usage

odeMethodToInt(method = c("liblsoda”, "lsoda"”, "dop853", "indLin"))

Arguments

method The method for solving ODEs. Currently this supports:
e "liblsoda” thread safe Isoda. This supports parallel thread-based solving,
and ignores user Jacobian specification.

* "1soda” — LSODA solver. Does not support parallel thread-based solving,
but allows user Jacobian specification.

* "dop853" — DOP853 solver. Does not support parallel thread-based solving
nor user Jacobian specification

e "indLin" — Solving through inductive linearization. The rxode2 dll must
be setup specially to use this solving routine.

Value

An integer for the method (unless the input is NULL, in which case, see the details)

plot.rxSolve 59

plot.rxSolve Plot rxode2 objects

Description

Plot rxode2 objects

Usage
S3 method for class 'rxSolve'
plot(x, vy, ..., log ="", xlab = "Time", ylab = "")
S3 method for class 'rxSolveConfint1'
plot(x, y, ..., xlab = "Time", ylab = "", log = "")
S3 method for class 'rxSolveConfint2'
plot(x, y, ..., xlab = "Time", ylab = "", log = "")
Arguments
X rxode2 object to plot
y Compartments or left-hand-side values to plot either as a bare name or as a
character vector
Ignored
log Should "" (neither x nor y), "x", "y", or "xy" (or "yx") be log-scale?
xlab, ylab The x and y axis labels
Value
A ggplot2 object
See Also

Other rxode?2 plotting: rxTheme ()

probit probit and inverse probit functions

Description

probit and inverse probit functions

60 rxAllowUnload

Usage
probit(x, low = @, high = 1)

probitInv(x, low = @, high = 1)

Arguments
X Input value(s) in range [low,high] to translate -Inf to Inf
low Lowest value in the range
high Highest value in the range

Value

values from probit, probitlnv and probitNormInfo

Examples

probit(@.25)
probitInv(-0.674)
probitNormInfo(probit(@.25), sd = 0.1)

probitNormInfo(probit(1, @, 10), sd = 1, low = @, high = 10)

rxAllowUnload Allow unloading of dlls

Description

Allow unloading of dlls

Usage

rxAllowUnload(allow)
Arguments

allow boolean indicating if garbage collection will unload of rxode2 dlls.
Value

Boolean allow; called for side effects

Author(s)
Matthew Fidler

rxAppendModel

Examples

Garbage collection will not unload un-used rxode2 dlls
rxAllowUnload(FALSE);

Garbage collection will unload unused rxode2 dlls
rxAllowUnload(TRUE);

61

rxAppendModel Append two rxui models together

Description

Append two rxui models together

Usage
rxAppendModel (..., common = TRUE)
Arguments
models to append together
common boolean that determines if you need a common value to bind
Value

New model with both models appended together

Author(s)
Matthew L. Fidler

Examples

ocmt <- function() {

ini({
tka <- exp(0.45) # Ka
tcl <- exp(1) # Cl
tv <- exp(3.45); # log V
the label("Label name") works with all models
add.sd <- 0.7

b))

model ({
ka <- tka
cl <- tcl
v <- tv

62 rxAssignControl Value

d/dt(depot) <- -ka * depot
d/dt(center) <- ka * depot - cl / v * center
cp <- center / v
cp ~ add(add.sd)
b))
3

idr <- function() {
ini({
tkin <- log(1)
tkout <- log(1)
tic50 <- log(10)
gamma <- fix(1)
idr.sd <- 1
D
model ({
kin <- exp(tkin)
kout <- exp(tkout)
ic50 <- exp(tic50)
d/dt(eff) <- kin - koutx(1-ceff*gamma/(ic50*gamma+ceff*gamma))
eff ~ add(idr.sd)
»
3

rxAppendModel (ocmt %>% model (ceff=cp,append=TRUE), idr)

rxAssignControlValue Assign Control Variable

Description

Assign Control Variable

Usage

rxAssignControlValue(ui, option, value)

Arguments
ui rxode2 ui function
option Option name in the control to modify
value Value of control to modify

Value

Nothing; called for the side effects

rxAssignPtr

Author(s)
Matthew L. Fidler

63

rxAssignPtr

Assign pointer based on model variables

Description

Assign pointer based on model variables

Usage

rxAssignPtr(object = NULL)

Arguments

object

Value

rxode?2 family of objects

nothing, called for side effects

rxbeta

Simulate beta variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www . johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxbeta(shapel,

Arguments

shapel, shape2

n

ncores

shape2, n = 1L, ncores = 1L)

non-negative parameters of the Beta distribution.

number of observations. If length(n) > 1, the length is taken to be the number
required.

Number of cores for the simulation

rxnorm simulates using the threefry sitmo generator.

rxnormV used to simulate with the vandercorput simulator, but since it didn’t
satisfy the normal properties it was changed to simple be an alias of rxnorm. It
is no longer supported in rxode2({3}) blocks

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

64 rxbinom

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

beta random deviates

Examples

Use threefry engine

rxbeta(0.5, 0.5, n = 10) # with rxbeta you have to explicitly state n
rxbeta(5, 1, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxbeta(1, 3)

This example uses ‘rxbeta‘ directly in the model

rx <- function() {
model ({
a <- rxbeta(2, 2)
D)
}

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxbinom Simulate Binomial variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www . johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

rxbinom 65

Usage

rxbinom(size, prob, n = 1L, ncores = 1L)

Arguments
size number of trials (zero or more).
prob probability of success on each trial.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator.
rxnormV used to simulate with the vandercorput simulator, but since it didn’t
satisfy the normal properties it was changed to simple be an alias of rxnorm. It
is no longer supported in rxode2 ({}) blocks
Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

binomial random deviates
Examples

Use threefry engine

rxbinom(10, 0.9, n = 10) # with rxbinom you have to explicitly state n
rxbinom(3, .5, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxbinom(4, 0.7)

This example uses ‘rxbinom® directly in the model

rx <- function() {
model ({
a <- rxbinom(1, 0.5)
H
3

66 rxcauchy

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxcauchy Simulate Cauchy variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www . johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxcauchy(location = @, scale = 1, n = 1L, ncores = 1L)

Arguments

location, scale
location and scale parameters.

n number of observations. If length(n) > 1, the length is taken to be the number
required.
ncores Number of cores for the simulation

rxnorm simulates using the threefry sitmo generator.

rxnormV used to simulate with the vandercorput simulator, but since it didn’t
satisfy the normal properties it was changed to simple be an alias of rxnorm. It
is no longer supported in rxode2({3}) blocks

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

Cauchy random deviates

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

rxchisq 67

Examples

Use threefry engine

rxcauchy(@, 1, n = 10) # with rxcauchy you have to explicitly state n
rxcauchy(@.5, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxcauchy(3)

This example uses ‘rxcauchy‘ directly in the model

rx <- function() {
model ({
a <- rxcauchy(2)
D)
3

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxchisq Simulate chi-squared variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www . johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxchisq(df, n = 1L, ncores = 1L)

Arguments
df degrees of freedom (non-negative, but can be non-integer).
n number of observations. If length(n) > 1, the length is taken to be the number
required.
ncores Number of cores for the simulation

rxnorm simulates using the threefry sitmo generator.

rxnormV used to simulate with the vandercorput simulator, but since it didn’t
satisfy the normal properties it was changed to simple be an alias of rxnorm. It
is no longer supported in rxode2({3}) blocks

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

68 rxClean

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.
Value

chi squared random deviates

Examples

Use threefry engine

rxchisq(@.5

, 10) # with rxchisq you have to explicitly state n
rxchisq(5, n

n =
= 10, ncores = 2) # You can parallelize the simulation using openMP

rxchisq(1)

This example uses ‘rxchisq‘ directly in the model

rx <- function() {
model ({
a <- rxchisq(2)
D
3

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxClean Cleanup anonymous DLLs by unloading them

Description

This cleans up any rxode2 loaded DLLs

rxCompile 69
Usage
rxClean(wd)
Arguments
wd What directory should be cleaned; (DEPRECIATED), this no longer does any-
thing.
This unloads all rxode2 anonymous dlls.
Value
TRUE if successful
Author(s)

Matthew L. Fidler

rxCompile

Compile a model if needed

Description

This is the compilation workhorse creating the rxode2 model DLL files.

Usage

rxCompile(
model,
dir,
prefix,
force = FALSE,
modName = NULL,
package = NULL,

)

S3 method for class 'rxModelVars'

rxCompile(
model,
dir = NULL,
prefix = NULL,
force = FALSE,
modName = NULL,
package = NULL,

70

S3 method for class 'character
rxCompile(

model,

dir = NULL,

prefix = NULL,

force = FALSE,

modName = NULL,

package = NULL,

)

S3 method for class 'rxD1l1'
rxCompile(model, ...)

S3 method for class 'rxode2'

rxCompile

rxCompile(model, ...)
Arguments
model This is the ODE model specification. It can be:

dir

prefix

force

modName

package

* a string containing the set of ordinary differential equations (ODE) and
other expressions defining the changes in the dynamic system.

¢ afile name where the ODE system equation is contained
An ODE expression enclosed in \{\}
(see also the filename argument). For details, see the sections “Details” and
rxode2 Syntax below.

This is the model directory where the C file will be stored for compiling.

If unspecified, the C code is stored in a temporary directory,
then the model is compiled and moved to the current directory.
Afterwards the C code is removed.

If specified, the C code is stored in the specified directory
and then compiled in that directory. The C code is not removed
after the DLL is created in the same directory. This can be
useful to debug the c-code outputs.

is a string indicating the prefix to use in the C based functions. If missing, it is
calculated based on file name, or md5 of parsed model.

is a boolean stating if the (re)compile should be forced if rxode2 detects that the
models are the same as already generated.

a string to be used as the model name. This string is used for naming various
aspects of the computations, including generating C symbol names, dynamic
libraries, etc. Therefore, it is necessary that modName consists of simple ASCII
alphanumeric characters starting with a letter.

Package name for pre-compiled binaries.

Other arguments sent to the rxTrans() function.

rxControlUpdateSens 71

Value
An rxDIl object that has the following components
» d11 DLL path
* model model specification

* .c A function to call C code in the correct context from the DLL using the .C() function.

e .call A function to call C code in the correct context from the DLL using the .Call()
function.

* args A list of the arguments used to create the rxDII object.

Author(s)
Matthew L.Fidler

See Also

rxode2()

rxControlUpdateSens This updates the tolerances based on the sensitivity equations

Description
This assumes the normal ODE equations are the first equations and the ODE is expanded by the
forward sensitivities or other type of sensitivity (like adjoint)

Usage

rxControlUpdateSens(rxControl, sensCmt = NULL, ncmt = NULL)

Arguments
rxControl Input list or rxControl type of list
sensCmt Number of sensitivity compartments
ncmt Number of compartments

Value

Updated rxControl where $atol, $rtol, $ssAtol $ssRtol are updated with different sensitivities
for the normal ODEs (first) and a different sensitivity for the larger compartments (sensitivities).

Author(s)
Matthew L. Fidler

72 rxD

Examples

tmp <- rxControl()
tmp2 <- rxControlUpdateSens(tmp, 3, 6)

tmp2$atol
tmp2$rtol
tmp2$ssAtol
tmp2$ssRtol

rxCreateCache This will create the cache directory for rxode2 to save between ses-
sions

Description

When run, if the R_user_dir for rxode2’s cache isn’t present, create the cache

Usage

rxCreateCache()

Value

nothing

Author(s)

Matthew Fidler

rxD Add to rxode2’s derivative tables

Description

Add to rxode2’s derivative tables

Usage

rxD(name, derivatives)

rxDelete 73

Arguments
name Function Name
derivatives A list of functions. Each function takes the same number of arguments as the
original function. The first function will construct the derivative with respect to
the first argument; The second function will construct the derivitive with respect
to the second argument, and so on.
Value
nothing
Author(s)
Matthew Fidler
Examples

Add an arbitrary list of derivative functions
In this case the fun(x,y) is assumed to be @.5%x"2+0.5%y"2

rxD("fun", list(
function(x, y) {
return(x)
1
function(x, y) {
return(y)
}
)

rxDelete Delete the DLL for the model

Description

This function deletes the DLL, but doesn’t delete the model information in the object.

Usage

rxDelete(obj)

Arguments

obj rxode?2 family of objects

Value

A boolean stating if the operation was successful.

74 rxexp

Author(s)
Matthew L.Fidler

rxDfdy Jacobian and parameter derivatives

Description

Return Jacobain and parameter derivatives

Usage
rxDfdy (obj)

Arguments

obj rxode?2 family of objects

Value

A list of the jacobian parameters defined in this rxode2 object.

Author(s)
Matthew L. Fidler

See Also

Other Query model information: rxInits(), rxLhs(), rxModelVars(), rxParams(), rxState()

rxexp Simulate exponential variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www . johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxexp(rate, n = 1L, ncores = 1L)

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

rxexp 75

Arguments
rate vector of rates.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator.
rxnormV used to simulate with the vandercorput simulator, but since it didn’t
satisfy the normal properties it was changed to simple be an alias of rxnorm. It
is no longer supported in rxode2({}) blocks
Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

exponential random deviates

Examples

Use threefry engine

rxexp(0.5

, 10) # with rxexp you have to explicitly state n
rxexp(5, n

n:
= 10, ncores = 2) # You can parallelize the simulation using openMP

rxexp(1)

This example uses ‘rxexp‘ directly in the model

rx <- function() {
model ({
a <- rxexp(2)
D)
3

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

76 rxf

rxf Simulate F variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www . johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxf(df1, df2, n = 1L, ncores = 1L)

Arguments
df1, df2 degrees of freedom. Inf is allowed.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator.
rxnormV used to simulate with the vandercorput simulator, but since it didn’t
satisfy the normal properties it was changed to simple be an alias of rxnorm. It
is no longer supported in rxode2 ({}) blocks
Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

f random deviates

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

rxFun 77

Examples

Use threefry engine

rxf (0.5, 0.5, n = 10) # with rxf you have to explicitly state n
rxf(5, 1, n =10, ncores = 2) # You can parallelize the simulation using openMP

rxf (1, 3)

This example uses ‘rxf‘ directly in the model

rx <- function() {
model ({
a <- rxf(2, 2)
1))
3

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxFun Add/Create C functions for use in rxode2

Description

Add/Create C functions for use in rxode2

Usage

rxFun(name, args, cCode)

rxRmFun(name)
Arguments

name This can either give the name of the user function or be a simple R function that
you wish to convert to C. If you have rxode2 convert the R function to C, the
name of the function will match the function name provided and the number of
arguments will match the R function provided. Hence, if you are providing an
R function for conversion to C, the rest of the arguments are implied.

args This gives the arguments of the user function

cCode This is the C-code for the new function

78 rxFun

Examples

Right now rxode2 is not aware of the function fun
Therefore it cannot translate it to symengine or
Compile a model with it.

try(rxode2("a=fun(a,b,c)"))

Note for this approach to work, it cannot interfere with C
function names or reserved rxode2 special terms. Therefore
f(x) would not work since f is an alias for bioavailability.

fun <- "
double fun(double a, double b, double c) {
return axatb*a+tc;

}

" ## C-code for function

rxFun(”fun”, c("a", "b", "c"), fun) ## Added function

Now rxode2 knows how to translate this function to symengine
rxToSE("fun(a,b,c)")

And will take a central difference when calculating derivatives
rxFromSE("Derivative(fun(a,b,c),a)")

Of course, you could specify the derivative table manually
rxD("fun”, list(
function(a, b, c) {
paste@("2x", a, "+", b)
b
function(a, b, c¢) {
return(a)
b
function(a, b, c¢) {
return(”0.0")
}
))

rxFromSE("Derivative(fun(a,b,c),a)")

You can also remove the functions by ‘rxRmFun®
rxRmFun(”fun")

you can also use R functions directly in rxode2

gg <- function(x, y) {
X +y

rxFun

3
f <- rxode2({
z = gg(x, ¥)
»

e <- et(1:10) |> as.data.frame()

e$x <- 1:10
e$y <- 21:30

rxSolve(f, e)

Note that since it touches R, it can only run single-threaded.
There are also requirements for the function:

#
#
#
1. It accepts one value per argument (numeric)
#

2. It returns one numeric value

If it is a simple function (like gg) you can also convert it to C
using rxFun and load it into rxode2

rxFun(gg)
rxSolve(f, e)

to stop the recompile simply reassign the function
f <- rxode2(f)

rxSolve(f, e)
rxRmFun("gg")

rm(gg)
rm(f)

You can also automatically convert a R function to R code (and
calculate first derivatives)
fun <- function(a, b, c) {

a*2+b*atc

3

rxFun(fun)

You can see the R code if you want with rxC
message(rxC("fun"))

you can also remove both the function and the
derivatives with rxRmFun(”fun")

79

80 rxgamma

rxRmFun(”fun")

rxgamma Simulate gamma variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www . johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxgamma(shape, rate = 1, n = 1L, ncores = 1L)

Arguments
shape The shape of the gamma random variable
rate an alternative way to specify the scale.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator.
rxnormV used to simulate with the vandercorput simulator, but since it didn’t
satisfy the normal properties it was changed to simple be an alias of rxnorm. It
is no longer supported in rxode2({}) blocks
Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

gamma random deviates

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

rxgeom 81

Examples

Use threefry engine

10) # with rxgamma you have to explicitly state n

rxgamma(@.5 =
10, ncores = 2) # You can parallelize the simulation using openMP

, n
rxgamma(5, n =

rxgamma(1)

This example uses ‘rxbeta‘ directly in the model

rx <- function() {
model ({
a <- rxgamma(2)
D)
3

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxgeom Simulate geometric variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www. johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxgeom(prob, n = 1L, ncores = 1L)

Arguments
prob probability of success in each trial. @ < prob <= 1.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
ncores Number of cores for the simulation

rxnorm simulates using the threefry sitmo generator.

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

82 rxgeom

rxnormV used to simulate with the vandercorput simulator, but since it didn’t
satisfy the normal properties it was changed to simple be an alias of rxnorm. It
is no longer supported in rxode2({}) blocks

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

geometric random deviates

Examples

Use threefry engine

rxgeom(0.5, n = 10) # with rxgeom you have to explicitly state n
rxgeom(0.25, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxgeom(0.75)

This example uses ‘rxgeom‘ directly in the model

rx <- function() {
model ({
a <- rxgeom(0.24)
b))
3

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxGetControl

83

rxGetControl rxGetControl option from ui

Description

rxGetControl option from ui

Usage

rxGetControl(ui, option, default)

Arguments
ui rxode2 ui object
option Option to get
default Default value
Value

Option (if present) or default value

Author(s)

Matthew L. Fidler

rxGetLin Get the linear compartment model true function

Description

Get the linear compartment model true function

Usage

rxGetLin(
model,
linCmtSens = c("linCmtA”, "1linCmtB", "1inCmtC"),
verbose = FALSE

84 rxGetrxode2

Arguments
model This is the ODE model specification. It can be:
* a string containing the set of ordinary differential equations (ODE) and
other expressions defining the changes in the dynamic system.
* a file name where the ODE system equation is contained
An ODE expression enclosed in \{\}
(see also the filename argument). For details, see the sections “Details” and
rxode2 Syntax below.
linCmtSens The method to calculate the linCmt() solutions
verbose When TRUE be verbose with the linear compartmental model
Value

model with linCmt() replaced with linCmtA()

Author(s)

Matthew Fidler

rxGetrxode?2 Get rxode2 model from object

Description

Get rxode2 model from object

Usage

rxGetrxode2(obj)
Arguments

obj rxode2 family of objects
Value

rxode2 model

rxHtml

85

rxHtml Format rxSolve and related objects as html.

Description

Format rxSolve and related objects as html.

Usage

rxHtml(x, ...)

S3 method for class 'rxSolve'

rxHtml(x, ...)
Arguments
X rxode2 object
Extra arguments sent to kable
Value

html code for rxSolve object

Author(s)
Matthew L. Fidler

rxIndLinState Set the preferred factoring by state

Description

Set the preferred factoring by state

Usage

rxIndLinState(preferred = NULL)

Arguments

preferred A list of each state’s preferred factorization

Value

Nothing

86 rxIndLin_

Author(s)

Matthew Fidler

rxIndLinStrategy This sets the inductive linearization strategy for matrix building

Description

When there is more than one state in a ODE that cannot be separated this specifies how it is incor-
porated into the matrix exponential.

Usage

rxIndLinStrategy(strategy = c("curState”, "split"))

Arguments
strategy The strategy for inductive linearization matrix building

* curState Prefer parameterizing in terms of the current state, followed by
the first state observed in the term.

* split Split the parameterization between all states in the term by dividing
each by the number of states in the term and then adding a matrix term for
each state.

Value
Nothing
Author(s)
Matthew L. Fidler
rxIndLin_ Inductive linearization solver

Description

Inductive linearization solver

rxInv

Arguments
cSub
op
tp
yp
tf
InfusionRate
on
cache
ME
IndF

Value

= Current subject number
* rxode2 solving options
* Prior time point/time zero
* Prior state; vector size = neq; Final state is updated here
* Final Time
= Rates of each compartment; vector size = neq
Indicator for if the compartment is "on"
0 = no Cache When dolndLin == 0, cache > 0 = nInf-1
the rxode2 matrix exponential function

The rxode2 Inductive Linearization function F

Returns a status for solving

1 = Successful solve

-1 = Maximum number of iterations reached when doing inductive linearization

87

rxInv

Invert matrix using RcppArmadillo.

Description

Invert matrix using RecppArmadillo.

Usage

rxInv(matrix)

Arguments

matrix

Value

matrix to be inverted.

inverse or pseudo inverse of matrix.

88

rxLhs

rxIsCurrent Checks if the rxode?2 object was built with the current build

Description

Checks if the rxode2 object was built with the current build

Usage

rxIsCurrent(obj)
Arguments

obj rxode?2 family of objects
Value

boolean indicating if this was built with current rxode2

rxLhs Left handed Variables

Description

This returns the model calculated variables

Usage
rxLhs(obj)

Arguments

obj rxode2 family of objects

Value

a character vector listing the calculated parameters

Author(s)
Matthew L.Fidler

See Also

rxode2

Other Query model information: rxDfdy(), rxInits(), rxModelVars(), rxParams(), rxState()

rxLock

89

rxLock Lock/unlocking of rxode2 dll file

Description

Lock/unlocking of rxode2 dll file

Usage
rxLock(obj)

rxUnlock(obj)

Arguments

obj A rxode2 family of objects

Value

nothing; called for side effects

rxnbinom Simulate Binomial variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www . johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution

to seed the engine threefry and then run the code.

Usage

1L, ncores = 1L)

rxnbinom(size, prob, n

1L, ncores = 1L)

rxnbinomMu(size, mu, n

Arguments
size target for number of successful trials, or dispersion parameter (the shape param-
eter of the gamma mixing distribution). Must be strictly positive, need not be
integer.
prob probability of success in each trial. @ < prob <= 1.
n number of observations. If length(n) > 1, the length is taken to be the number

required.

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

90 rxnbinom

ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator.

rxnormV used to simulate with the vandercorput simulator, but since it didn’t
satisfy the normal properties it was changed to simple be an alias of rxnorm. It
is no longer supported in rxode2({}) blocks

mu alternative parametrization via mean: see ‘Details’.

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

negative binomial random deviates. Note that rxbinom2 uses the mu parameterization an the rxbinom
uses the prob parameterization (mu=size/(prob+size))

Examples

Use threefry engine

rxnbinom(10, 0.9, n = 10) # with rxbinom you have to explicitly state n
rxnbinom(3, 0.5, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxnbinom(4, 0.7)

use mu parameter
rxnbinomMu(40, 40, n=10)

This example uses ‘rxbinom‘ directly in the model
rx <- function() {
model ({
a <- rxnbinom(10@, 0.5)
k)]
3
et <- et(1, id = 1:100)

s <- rxSolve(rx, et)

rx <- function() {
model ({

rxNorm 91

a <- rxnbinomMu(10@, 40)
»
3

s <- rxSolve(rx, et)

rxNorm Get the normalized model

Description

This get the syntax preferred model for processing

Usage

rxNorm(obj, condition = NULL, removelnis, removeJac, removeSens)

Arguments
obj rxode?2 family of objects
condition Character string of a logical condition to use for subsetting the normalized
model. When missing, and a condition is not set via rxCondition, return the
whole code with all the conditional settings intact. When a condition is set with
rxCondition, use that condition.
removelnis A boolean indicating if parameter initialization will be removed from the model
removeJac A boolean indicating if the Jacobians will be removed.
removeSens A boolean indicating if the sensitivities will be removed.
Value

Normalized Normal syntax (no comments)

Author(s)

Matthew L. Fidler

92 rxnormV

rxnormV Simulate random normal variable from threefry generator

Description

Simulate random normal variable from threefry generator

Usage

rxnormV(mean = @, sd = 1, n = 1L, ncores = 1L)

rxnorm(mean = @, sd = 1, n = 1L, ncores = 1L)

Arguments
mean vector of means.
sd vector of standard deviations.
n number of observations
ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator.
rxnormV used to simulate with the vandercorput simulator, but since it didn’t
satisfy the normal properties it was changed to simple be an alias of rxnorm. It
is no longer supported in rxode2({}) blocks
Value

normal random number deviates

Examples

Use threefry engine

rxnorm(n = 10) # with rxnorm you have to explicitly state n
rxnorm(n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxnorm(2, 3) ## The first 2 arguments are the mean and standard deviation

This example uses ‘rxnorm‘ directly in the model

rx <- function() {
model ({
a <- rxnorm()
1)
3

et <- et(1, id = 1:2)

rxode2

s <- rxSolve(rx, et)

rxode2 Create an ODE-based model specification

Description

Create a dynamic ODE-based model object suitably for translation into fast C code

Usage
rxode2(
model,
modName = basename(wd),
wd = getwd(),

filename = NULL,

extraC = NULL,

debug = FALSE,

calcJac = NULL,

calcSens = NULL,

collapseModel = FALSE,

package = NULL,

linCmtSens = c("1linCmtA", "1linCmtB", "linCmtC"),
indLin = FALSE,

verbose = FALSE,

fullPrint = getOption("rxode2.fullPrint”, FALSE),
envir = parent.frame()

)

RXODE (
model,
modName = basename(wd),
wd = getwd(),

filename = NULL,
extraC = NULL,

debug = FALSE,

calcJac = NULL,
calcSens = NULL,
collapseModel = FALSE,
package = NULL,

linCmtSens = c("1inCmtA"”, "linCmtB"”, "linCmtC"),
indLin = FALSE,

94 rxode2

verbose = FALSE,
fullPrint = getOption("rxode2.fullPrint”, FALSE),
envir = parent.frame()

)

rxode (
model,
modName = basename(wd),
wd = getwd(),

filename = NULL,

extraC = NULL,

debug = FALSE,

calcJac = NULL,

calcSens = NULL,

collapseModel = FALSE,

package = NULL,

linCmtSens = c("1linCmtA", "linCmtB", "linCmtC"),
indLin = FALSE,

verbose = FALSE,

fullPrint = getOption("rxode2.fullPrint”, FALSE),
envir = parent.frame()

Arguments

model This is the ODE model specification. It can be:

* a string containing the set of ordinary differential equations (ODE) and
other expressions defining the changes in the dynamic system.

* a file name where the ODE system equation is contained

An ODE expression enclosed in \{\}

(see also the filename argument). For details, see the sections “Details” and
rxode2 Syntax below.

modName a string to be used as the model name. This string is used for naming various
aspects of the computations, including generating C symbol names, dynamic
libraries, etc. Therefore, it is necessary that modName consists of simple ASCII
alphanumeric characters starting with a letter.

wd character string with a working directory where to create a subdirectory accord-
ing to modName. When specified, a subdirectory named after the “modName. d”
will be created and populated with a C file, a dynamic loading library, plus var-
ious other working files. If missing, the files are created (and removed) in the
temporary directory, and the rxode2 DLL for the model is created in the current
directory named rx_????_platform, for example rx_129f8f97fb94a87ca49ca8dafe691ele_i386.d1]

filename A file name or connection object where the ODE-based model specification re-
sides. Only one of model or filename may be specified.

extraC Extra c code to include in the model. This can be useful to specify functions in
the model. These C functions should usually take double precision arguments,

rxode2 95

and return double precision values.

debug is a boolean indicating if the executable should be compiled with verbose de-
bugging information turned on.

calcJac boolean indicating if rxode2 will calculate the Jacobain according to the speci-
fied ODEs.

calcSens boolean indicating if rxode2 will calculate the sensitivities according to the spec-
ified ODEs.

collapseModel boolean indicating if rxode2 will remove all LHS variables when calculating
sensitivities.

package Package name for pre-compiled binaries.

ignored arguments.

linCmtSens The method to calculate the linCmt() solutions

indLin Calculate inductive linearization matrices and compile with inductive lineariza-
tion support.

verbose When TRUE be verbose with the linear compartmental model

fullPrint When using printf within the model, if TRUE print on every step (except ME/indLin),
otherwise when FALSE print only when calculating the d/dt

envir is the environment to look for R user functions (defaults to parent environment)

Details

The Rx in the name rxode?2 is meant to suggest the abbreviation Rx for a medical prescription, and
thus to suggest the package emphasis on pharmacometrics modeling, including pharmacokinetics
(PK), pharmacodynamics (PD), disease progression, drug-disease modeling, etc.

The ODE-based model specification may be coded inside four places:

¢ Inside a rxode2({}) block statements:

library(rxode2)

mod <- rxode2({
simple assignment
C2 <- centr/V2

time-derivative assignment
d/dt(centr) <- Fx*KAxdepot - CL*C2 - QxC2 + Q*C3;
1))

using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntul~22.04) 11.4.0’°
In file included from /usr/share/R/include/R.h:71,

from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2parse/include/rxode2parse.h: 3:
it from /home/matt/src/rxode2/inst/include/rxode2.h:9,

from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2parse/include/rxode2_model_sh:
from rx_80ab028288eddd16733200578a7fac4b_.c:117:

/usr/share/R/include/R_ext/Complex.h:80:6: warning: ISO C99 doesn’t support unnamed structs/unions
80 | };

|

96

rxode2

nn

* Inside a rxode2("") string statement:
mod <- rxode2("

simple assignment

C2 <- centr/Vv2

time-derivative assignment
d/dt(centr) <- FxKAxdepot - CL*C2 - QxC2 + Q*C3;
II)

using C compiler: ‘gcc (Ubuntu 11.4.0-Tubuntul~22.04) 11.4.0’

In file included from /usr/share/R/include/R.h:71,

#i# from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2parse/include/rxode2parse.h: 3:
from /home/matt/src/rxode2/inst/include/rxode2.h:9,

#i# from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2parse/include/rxode2_model_sh:
from rx_16fc28e9f2ad308e65c8fb7a9b53fdc1_.c:117:

/usr/share/R/include/R_ext/Complex.h:80@:6: warning: ISO C99 doesn’t support unnamed structs/unions
80 | };

#H [A

* In a file name to be loaded by rxode2:

writeLines("
simple assignment
C2 <- centr/V2

time-derivative assignment

d/dt(centr) <- F*KA*xdepot - CL*C2 - QxC2 + Q*C3;
", "modelFile.rxode2")
mod <- rxode2(filename="'modelFile.rxode2")
unlink("modelFile.rxode2")

* In a model function which can be parsed by rxode2:

mod <- function() {
model ({
simple assignment
C2 <- centr/V2

time-derivative assignment
d/dt(centr) <- FxKA*depot - CL*C2 - QxC2 + Q*C3;
»
}

mod <- rxode2(mod) # or simply mod() if the model is at the end of the function
These model functions often have residual components and initial

(*ini({})') conditions attached as well. For example the
theophylline model can be written as:

rxode2 97

one.compartment <- function() {

ini({
tka <- 0.45 # Log Ka
tcl <- 1 # Log Cl
tv <- 3.45 # Log V
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

»

model ({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
d/dt(depot) = -ka * depot
d/dt(center) = ka * depot - cl / v * center
cp = center / v
cp ~ add(add.sd)

»

3

after parsing the model
mod <- one.compartment()

For the block statement, character string or text file an internal rxode2 compilation manager trans-
lates the ODE system into C, compiles it and loads it into the R session. The call to rxode2 produces
an object of class rxode2 which consists of a list-like structure (environment) with various member
functions.

For the last type of model (a model function), a call to rxode2 creates a parsed rxode?2 ui that can
be translated to the rxode2 compilation model.

mod$simulationModel

using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntul~22.04) 11.4.0’°
In file included from /usr/share/R/include/R.h:71,

from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2parse/include/rxode2parse.h: 3:
it from /home/matt/src/rxode2/inst/include/rxode2.h:9,

from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2parse/include/rxode2_model_sh:
#i# from rx_e3306ec84cb8151ac51b@c27ef3dbbe7_.c:117:

/usr/share/R/include/R_ext/Complex.h:80:6: warning: ISO C99 doesn’t support unnamed structs/unions
#it 80 | };

#it | A

rxode2 2.1.2 model named rx_e3306ec84ch8151ac51b0c27ef3dbbe7 model (ready).
x$state: depot, center

x$stateExtra: cp

x$params: tka, tcl, tv, add.sd, eta.ka, eta.cl, eta.v, rxerr.cp

x$lhs: ka, cl, v, cp, ipredSim, sim

98

rxode2

or
mod$simulationIniModel

using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntul~22.04) 11.4.0’°
In file included from /usr/share/R/include/R.h:71,

from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2parse/include/rxode2parse.h: 3:
it from /home/matt/src/rxode2/inst/include/rxode2.h:9,

from /home/matt/R/x86_64-pc-linux-gnu-library/4.3/rxode2parse/include/rxode2_model_sh:
from rx_6f91c3aeabfdac8ced143f492e648867_.c:117:

/usr/share/R/include/R_ext/Complex.h:80:6: warning: ISO C99 doesn’t support unnamed structs/unions
#H# 80 | };

#it | A

rxode2 2.1.2 model named rx_6f91c3aeabfdac8ced143f492e648867 model (ready).
x$state: depot, center

x$stateExtra: cp

x$params: tka, tcl, tv, add.sd, eta.ka, eta.cl, eta.v, rxerr.cp

x$lhs: ka, cl, v, cp, ipredSim, sim

This is the same type of function required for nlmixr2 estimation and can be extended and modified
by model piping. For this reason will be focused on in the documentation.

This basic model specification consists of one or more statements optionally terminated by semi-
colons ; and optional comments (comments are delimited by # and an end-of-line).

A block of statements is a set of statements delimited by curly braces, { ... }.

Statements can be either assignments, conditional if/else if/else, while loops (can be exited by
break), special statements, or printing statements (for debugging/testing).

Assignment statements can be:

 simple assignments, where the left hand is an identifier (i.e., variable)

* special time-derivative assignments, where the left hand specifies the change of the amount
in the corresponding state variable (compartment) with respect to time e.g., d/dt(depot):

* special initial-condition assignments where the left hand specifies the compartment of the
initial condition being specified, e.g. depot (@) =@

* special model event changes including bioavailability (f (depot)=1), lag time (alag(depot)=0),
modeled rate (rate(depot)=2) and modeled duration (dur(depot)=2). An example of
these model features and the event specification for the modeled infusions the rxode2 data
specification is found in rxode2 events vignette.

* special change point syntax, or model times. These model times are specified by mtime (var)=time

* special Jacobian-derivative assignments, where the left hand specifies the change in the com-
partment ode with respect to a variable. For example, if d/dt (y) = dy, then a Jacobian for this
compartment can be specified as df (y)/dy(dy) = 1. There may be some advantage to obtain-
ing the solution or specifying the Jacobian for very stiff ODE systems. However, for the few
stiff systems we tried with LSODA, this actually slightly slowed down the solving.

Note that assignment can be done by =, <- or ~.

https://nlmixr2.github.io/rxode2/articles/rxode2-event-types.html

rxode2 99

When assigning with the ~ operator, the simple assignments and time-derivative assignments will
not be output. Note that with the rxode2 model functions assignment with ~ can also be overloaded
with a residual distribution specification.

Special statements can be:

* Compartment declaration statements, which can change the default dosing compartment
and the assumed compartment number(s) as well as add extra compartment names at the end
(useful for multiple-endpoint nlmixr models); These are specified by cmt (compartmentName)

* Parameter declaration statements, which can make sure the input parameters are in a certain
order instead of ordering the parameters by the order they are parsed. This is useful for keeping
the parameter order the same when using 2 different ODE models. These are specified by
param(parl, par2,...)

An example model is shown below:

simple assignment
C2 <- centr/V2

time-derivative assignment
d/dt(centr) <- F*KA*depot - CL*C2 - QxC2 + Q*C3;

Expressions in assignment and if statements can be numeric or logical.

Numeric expressions can include the following numeric operators +, -, *, /, * and those
mathematical functions defined in the C or the R math libraries (e.g., fabs, exp, log, sin, abs).

You may also access the R’s functions in the R math libraries, like 1gammafn for the log gamma
function.

The rxode?2 syntax is case-sensitive, i.e., ABC is different than abc, Abc, ABc, etc.

Identifiers:

Like R, Identifiers (variable names) may consist of one or more alphanumeric, underscore _ or
period . characters, but the first character cannot be a digit or underscore _.

Identifiers in a model specification can refer to:

* State variables in the dynamic system (e.g., compartments in a pharmacokinetics model).

* Implied input variable, t (time), tlast (last time point), and podo (oral dose, in the undocu-
mented case of absorption transit models).

 Special constants like pi or R’s predefined constants.

* Model parameters (e.g., ka rate of absorption, CL clearance, etc.)

 Others, as created by assignments as part of the model specification; these are referred as
LHS (left-hand side) variable.

Currently, the rxode2 modeling language only recognizes system state variables and “parame-
ters”, thus, any values that need to be passed from R to the ODE model (e.g., age) should be
either passed in the params argument of the integrator function rxSolve() or be in the supplied
event data-set.

There are certain variable names that are in the rxode2 event tables. To avoid confusion, the
following event table-related items cannot be assigned, or used as a state but can be accessed in
the rxode2 code:

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Numerical-analysis-subroutines
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Mathematical-constants

100 rxode2

e cmt

* dvid

e addl

* ss

* rate

* id
However the following variables are cannot be used in a model specification:

e evid

e ii
Sometimes rxode2 generates variables that are fed back to rxode2. Similarly, nlmixr2 generates
some variables that are used in nlmixr estimation and simulation. These variables start with the

either the rx or nlmixr prefixes. To avoid any problems, it is suggested to not use these variables
starting with either the rx or nlmixr prefixes.

Logical Operators:

Logical operators support the standard R operators ==, != >= <= > and <. Like R these can be
in if () or while() statements, ifelse() expressions. Additionally they can be in a standard
assignment. For instance, the following is valid:

covl = covmx(sexf == "female") + covmx(sexf != "female")

Notice that you can also use character expressions in comparisons. This convenience comes at a
cost since character comparisons are slower than numeric expressions. Unlike R, as.numeric or
as.integer for these logical statements is not only not needed, but will cause an syntax error if
you try to use the function.

Supported functions:
All the supported functions in rxode2 can be seen with the rxSupportedFuns().
A brief description of the built-in functions are in the following table:

Function Description

gamma(x) The Gamma function

lgamma(x) Natural logarithm of absolute value of gamma function
digamma(x) First derivative of lgamma

trigamma(x) Second derivative of Igamma

tetragamma(x) Third derivative of lgamma

pentagamma(x) Fourth derivative of lgamma

psigamma(x, deriv) n-th derivative of Psi, the digamma function, which is the derivative of lgammafn. In othe
cospi(x) cos(pi*x)

sinpi(x) sin(pi*x)

tanpi(x) tan(pi*x)

beta(a, b) Beta function

Ibeta(a, b) log Beta function

bessel_i(x, nu, expo) Bessel function type I with index nu

bessel_j(x, nu) Bessel function type J with index nu

bessel_k(x, ku, expo) Bessel function type K with index nu

bessel_y(x, nu) Bessel function type Y with index nu

rxode2

R_pow(x, y)
R_pow_di(x, I)
loglpmx

loglpexp

expml1(x)
lgammalp(x)
sign(x)

fsign(x, y)

fprec(x, digits)
fround(x, digits)
ftrunc(x)

abs(x)

sin(x)

cos(x)

tan(x)

factorial(x)
Ifactorial(x)
log10(x)

log2(x)

pnorm(x)

gnorm(x)

probit(x, low=0, hi=1)
probitlnv(q, low=0, hi=1)
acos(x)

asin(x)

atan(x)

atan2(a, b)

sinh(x)

cosh(x)

tanh(x)

floor(x)

ceil(x)

logit(x, low=0, hi=1)
expit(x, low=0, hi=1)
gammagq(a, z)
gammagqInv(a, q)
ifelse(cond, trueValue, falseValue)
gammap(a, z)
gammaplnv(a, p)
gammaplnva(x, p)
rxnorm(x)
rxnormV (X)
rxcauchy

rxchisq

rxexp

rxf

rxgamma

rxbeta

101

xNy

xNy

log(1+x) - x

log(1+exp(x))

exp(x)-1

log(gamma(x+1))

Compute the signum function where sign(x) is 1, 0 -1

abs(x)*sign(y)

x rounded to digits (after the decimal point, used by signif()

Round, used by R’s round()

Truncated towards zero

absolute value of x

sine of x

cos of x

tan of x

factorial of x

log(factorial(x))

log base 10

log base 2

Normal CDF of x

Normal pdf of x

Probit (normal pdf) of x transforming into a range

Inverse probit of x transforming into a range

Inverse cosine

Inverse sine

Inverse tangent

Four quadrant inverse tangent

Hyperbolic sine

Hyperbolic cosine

Hyperbolic tangent

Downward rounding

Upward rounding

Logit transformation of x transforming into a range

expit transofmration in range

Normalized incomplete gamma from boost

Normalized incomplete gamma inverse from boost

if else function

Normalized lower incomplete gamma from boost

Inverse of Normalized lower incomplete gamma from boost

Inverse of Normalized lower incomplete gamma from boost

Generate one deviate of from a normal distribution for each observation scale
Generate one deviate from low discrepancy normal for each observation
Generate one deviate from the cauchy distribution for each observation
Generate one deviate from the chisq distribution for each observation
Generate one deviate from the exponential distribution for each observation
Generate one deviate from low discrepancy normal for each observation
Generate one deviate from the gamma distribution for each observation
Generate one deviate from the beta distribution for each observation

102

rxode2

rxgeom Generate one deviate from the geometric distribution for each observation
rXpois Generate one deviate from the poission distribution for each observation

rxt Generate one deviate from the t distribtuion for each observation

tad() or tad(x) Time after dose (tad()) or time after dose for a compartment tad(cmt)

tafd() or tafd(x) Time after first dose (tafd()) or time after first dose for a compartment tafd(cmt)
dosenum() Dose Number

tlast() or tlast(cmt)
tfirst() or tfirst(cmt)

Time of Last dose; This takes into consideration any lag time, so if there is a dose at time
Time since first dose or time since first dose of a compartment

prod(...) product of terms; This uses PreciseSums so the product will not have as much floating pc
sum(...) sum of terms; This uses PreciseSums so the product will not have as much floating point
max(...) maximum of a group of numbers

min(...) Min of a group of numbers

lag(parameter, number=1)
lead(parameter, number=2)
diff(par, number=1)

Get the lag of an input parameter; You can specify a number of lagged observations
Get the lead of an input parameter; You can specify a number of lead observation
Get the difference between the current parameter and the last parameter; Can change the

first(par) Get the first value of an input parameter

last(par) Get the last value of an input parameter

transit() The transit compartment psuedo function

is.na() Determine if a value is NA

is.nan() Determine if a value is NaN

is.infinite() Check to see if the value is infinite

rinorm(x) Generate one deviate of from a normal distribution for each individual

rinormV(x) Generate one deviate from low discrepancy normal for each individual

ricauchy Generate one deviate from the cauchy distribution for each individual

richisq Generate one deviate from the chisq distribution for each individual

riexp Generate one deviate from the exponential distribution for each individual

rif Generate one deviate from low discrepancy normal for each individual

rigamma Generate one deviate from the gamma distribution for each individual

ribeta Generate one deviate from the beta distribution for each individual

rigeom Generate one deviate from the geometric distribution for each individual

ropois Generate one deviate from the poission distribution for each individual

rit Generate one deviate from the t distribtuion for each individual

simeps Simulate EPS from possibly truncated sigma matrix. Will take sigma matrix from the cur
simeta Simulate ETA from possibly truncated omega matrix. Will take the omega matrix from tl

Note that lag(cmt) =is equivalent to alag(cmt) = and not the same as = lag(wt)

Reserved keywords:

There are a few reserved keywords in a rxode2 model. They are in the following table:

Reserved Name Meaning

time solver time

podo In Transit compartment models, last dose amount
tlast Time of Last dose

M_E Exp(1)

M_LOG2E log2(e)

M_LOGI0E log10(e)

M_LN2 log(2)

rxode2 103

M_LN10 log(10)
M_PI pi
M_PI_2 pi/2
M_PI_4 pi/4
M_1_PI 1/pi
M_2_PI 2/pi
M_2_SQRTPI 2/sqrt(pi)
M_SQRT2 sqrt(2)
M_SQRT1_2 1/sqrt(2)
M_SQRT_3 sqrt(3)
M_SQRT_32 sqrt(32)
M_LOGI10_2 Logl10(2)
M_2PI 2%pi
M_SQRT_PI sqrt(pi)

M_1_SQRT_2PI 1/(sqrt(2*pi))
M_LN_SQRT_PI log(sqrt(pi))
M_LN_SQRT_2PI log(sqrt(2*pi))
M_LN_SQRT_PId2 log(sqrt(pi/2))

pi pi

NA R’s NA value

NaN Not a Number Value

Inf Infinite Value

newind 1: First record of individual; 2: Subsequent record of individual

rxFlag Flag for what part of the rxode2 model is being run; 1: ddt; 2: jac; 3: ini; 4: F; 5: lag; 6: rate; 7: dur; 8:

Note that rxFlag will always output 11 or calc_lhs since that is where the final variables are
calculated, though you can tweak or test certain parts of rxode?2 by using this flag.

Residual functions when using rxode2 functions:

In addition to ~ hiding output for certain types of output, it also is used to specify a residual
output or endpoint when the input is an rxode2 model function (that includes the residual in the
model ({}) block).

These specifications are of the form:
var ~ add(add.sd)

Indicating the variable var is the variable that represents the individual central tendencies of the
model and it also represents the compartment specification in the data-set.

You can also change the compartment name using the | syntax, that is:
var ~ add(add.sd) | cmt

In the above case var represents the central tendency and cmt represents the compartment or dvid
specification.

Transformations:
For normal and related distributions, you can apply the transformation on both sides by using
some keywords/functions to apply these transformations.

Transformation rxode2/nlmixr2 code

104

rxode2

Box-Cox +boxCox(lambda)

Yeo-Johnson +yeoJohnson(lambda)
logit-normal +logitNorm(logit.sd, low, hi)
probit-normal +probitNorm(probid.sd, low, hi)
log-normal +Inorm(Inorm.sd)

By default for the likelihood for all of these transformations is calculated on the untransformed
scale.

For bounded variables like logit-normal or probit-normal the low and high values are defaulted
to 0 and 1 if missing.

For models where you wish to have a proportional model on one of these transformation you
can replace the standard deviation with NA

To allow for more transformations, 1norm(), probitNorm() and logitNorm() can be combined
the variance stabilizing yeoJohnson() transformation.

Normal and t-related distributions:

For the normal and t-related distributions, we wanted to keep the ability to use skewed dis-
tributions additive and proportional in the t/cauchy-space, so these distributions are specified
differently in comparison to the other supported distributions within nlmixr2:

Distribution How to Add Example
Normal (log-likelihood) +dnorm() cc ~ add(add.sd) + dnorm()
T-distribution +dt(df) cc ~a dd(add.sd) + dt(df)

Cauchy (t with df=1) +dcauchy() cc ~ add(add.sd) + dcauchy()

Note that with the normal and t-related distributions nlmixr2 will calculate cwres and npde
under the normal assumption to help assess the goodness of the fit of the model.

Also note that the +dnorm() is mostly for testing purposes and will slow down the estimation
procedure in nlmixr2. We suggest not adding it (except for explicit testing). When there are
multiple endpoint models that mix non-normal and normal distributions, the whole problem is
shifted to a log-likelihood method for estimation in nlmixr2.

Notes on additive + proportional models:

There are two different ways to specify additive and proportional models, which we will call
combinedl and combined2, the same way that Monolix calls the two distributions (to avoid
between software differences in naming).

The first, combined1, assumes that the additive and proportional differences are on the standard
deviation scale, or:

y=f+(a+b* fAc)*err

The second, combined2, assumes that the additive and proportional differences are combined
on a variance scale:

y=f+[sqrt(a*2+b"2 *fA(2c))]*err

The default in nlmixr2/rxode?2 if not otherwise specified is combined2 since it mirrors how
adding 2 normal distributions in statistics will add their variances (not the standard deviations).
However, the combined1 can describe the data possibly even better than combined2 so both
are possible options in rxode2/nlmixr2.

Distributions of known likelihoods:

rxode2 105

For residuals that are not related to normal, t-distribution or cauchy, often the residual specifi-
cation is of the form:

cmt ~ dbeta(alpha, beta)

Where the compartment specification is on the left handed side of the specification.
For generalized likelihood you can specify:

11(cmt) ~ 1lik specification

Ordinal likelihoods:

Finally, ordinal likelihoods/simulations can be specified in 2 ways. The first is:
err ~ c(p@, pl, p2)

Here err represents the compartment and p@ is the probability of being in a specific category:

Category Probability

1 p0
2 pl
3 p2
4 1-p0-p1-p2

It is up to the model to ensure that the sum of the p values are less than 1. Additionally you can
write an arbitrary number of categories in the ordinal model described above.

It seems a little off that p@ is the probability for category 1 and sometimes scores are in non-
whole numbers. This can be modeled as follows:

err ~ c(p0=0, pl=1, p2=2, 3)

Here the numeric categories are specified explicitly, and the probabilities remain the same:

Category Probability

0 pO
1 pl
2 p2
3 1-p0-p1-p2

General table of supported residual distributions:
In general all the that are supported are in the following table (available in rxode2: : rxResidualError)

Error model Functional Form Transformation code

constant None var ~ add(add.sd)

proportional None var ~ prop(prop.sd)

power None var ~ pow(pow.sd, exponent)
additive+proportional combined] None var ~ add(add.sd) + prop(prop.sd) + combined1()
additive+proportional combined2 None var ~ add(add.sd) + prop(prop.sd) + combined?2()
additive+power combined] None var ~ add(add.sd) + pow(pow.sd, exponent) + cor
additive+power combined2 None var ~ add(add.sd) + pow(pow.sd, exponent) + cor
constant log var ~ Inorm(add.sd)

proportional log var ~ Inorm(NA) + prop(prop.sd)

power log var ~ Inorm(NA) + pow(pow.sd, exponent)

additive+proportional combined] log var ~ Inorm(add.sd) + prop(prop.sd) + combined

106

additive+proportional
additive+power
additive+power
constant

proportional

power
additive+proportional
additive+proportional
additive+power
additive+power
constant

proportional

power
additive+proportional
additive+proportional
additive+power
additive+power
constant

proportional

power
additive+proportional
additive+proportional
additive+power
additive+power
additive

proportional

power
additive+proportional
additive+proportional
additive+power
additive+power
constant

proportional

power
additive+proportional
additive+proportional
additive+power
additive+power
additive

proportional

power
additive+proportional
additive+proportional
additive+power
additive+power
constant+t
proportional-+t
power+t

combined2
combined1
combined?2

combined1
combined2
combinedl
combined?2

combinedl
combined?2
combined1
combined?2

combined1
combined2
combined]
combined2

combined1
combined?2
combinedl
combined?2

combinedl
combined?2
combined1
combined?2

combined1
combined?2
combined]
combined2

log

log

log

boxCox

boxCox

boxCox

boxCox

boxCox

boxCox

boxCox

yeoJohnson
yeoJohnson
yeoJohnson
yeoJohnson
yeoJohnson
yeoJohnson
yeoJohnson

logit

logit

logit

logit

logit

logit

logit
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
logit

probit

probit

probit

probit

probit

probit
yeoJohnson(probit())
yeoJohnson(probit())
yeoJohnson(probit())
yeoJohnson(probit())
yeoJohnson(probit())
yeoJohnson(probit())
yeoJohnson(probit())
None

None

None

rxode2

var ~ Inorm(add.sd) + prop(prop.sd) + combined:
var ~ Inorm(add.sd) + pow(pow.sd, exponent) + ¢
var ~ Inorm(add.sd) + pow(pow.sd, exponent) + ¢
var ~ boxCox(lambda) + add(add.sd)

var ~ boxCox(lambda) + prop(prop.sd)

var ~ boxCox(lambda) + pow(pow.sd, exponent)
var ~ boxCox(lambda) + add(add.sd) + prop(pror
var ~ boxCox(lambda) + add(add.sd) + prop(prot
var ~ boxCox(lambda) + add(add.sd) + pow(pop.
var ~ boxCox(lambda) + add(add.sd) + pow(pop.
var ~ yeoJohnson(lambda) + add(add.sd)

var ~ yeoJohnson(lambda) + prop(prop.sd)

var ~ yeoJohnson(lambda) + pow(pow.sd, expone
var ~ yeoJohnson(lambda) + add(add.sd) + prop(]
var ~ yeoJohnson(lambda) + add(add.sd) + prop(
var ~ yeoJohnson(lambda) + add(add.sd) + pow(j
var ~ yeoJohnson(lambda) + add(add.sd) + pow(]
var ~ logitNorm(logit.sd)

var ~ logitNorm(NA) + prop(prop.sd)

var ~ logitNorm(NA) + pow(pow.sd, exponent)
var ~ logitNorm(logit.sd) + prop(prop.sd)

var ~ logitNorm(logit.sd) + prop(prop.sd)

var ~ logitNorm(logit.sd) + pow(pow.sd, exponen
var ~ logitNorm(logit.sd) + pow(pow.sd, exponer
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ yeoJohnson(lambda) + logitNorm(NA) + pr
var ~ yeoJohnson(lambda) + logitNorm(NA) + p«
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ probitNorm(probit.sd)

var ~ probitNorm(NA) + prop(prop.sd)

var ~ probitNorm(NA) + pow(pow.sd, exponent)
var ~ probitNorm(probit.sd) + prop(prop.sd) + co
var ~ probitNorm(probit.sd) + prop(prop.sd) + co
var ~ probitNorm(probit.sd) + pow(pow.sd, expor
var ~ probitNorm(probit.sd) + pow(pow.sd, expor
var ~ yeoJohnson(lambda) + probitNorm(probit.s
var ~ yeoJohnson(lambda) + probitNorm(NA) +
var ~ yeoJohnson(lambda) + probitNorm(NA) +
var ~ yeoJohnson(lambda) + probitNorm(probit.s
var ~ yeoJohnson(lambda) + probitNorm(probit.s
var ~ yeoJohnson(lambda) + probitNorm(probit.s
var ~ yeoJohnson(lambda) + probitNorm(probit.s
var ~ add(add.sd) + dt(df)

var ~ prop(prop.sd) + dt(df)

var ~ pow(pow.sd, exponent) + dt(df)

rxode2

additive+proportional+t
additive+proportional+t
additive+power+t
additive+power+t
constant+t
proportional-+t

power+t
additive+proportional+t
additive+proportional+t
additive+power+t
additive+power+t
constant+t
proportional+t

power+t
additive+proportional+t
additive+proportional+t
additive+power+t
additive+power+t
constant+t
proportional-+t

power+t
additive+proportional+t
additive+proportional+t
additive+power+t
additive+power+t
constant+t
proportional+t

power+t
additive+proportional+t
additive+proportional+t
additive+power+t
additive+power+t
additive+t
proportional-+t

power+t
additive+proportional+t
additive+proportional+t
additive+power+t
additive+power+t
constant+t
proportional+t

power+t
additive+proportional+t
additive+proportional+t
additive+power+t
additive+power+t
additive+t
proportional+t

combined1
combined?2
combinedl
combined?2

combinedl
combined2
combined1
combined?2

combined1
combined?2
combined]
combined2

combined]
combined2
combined1
combined2

combined1
combined2
combined1
combined?2

combined1
combined?2
combined]
combined?2

combined1
combined2
combined1
combined2

None

None

None

None

log

log

log

log

log

log

log

boxCox

boxCox

boxCox

boxCox

boxCox

boxCox

boxCox
yeoJohnson
yeoJohnson
yeoJohnson
yeoJohnson
yeoJohnson
yeoJohnson
yeoJohnson

logit

logit

logit

logit

logit

logit

logit
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
logit

probit

probit

probit

probit

probit

probit
yeoJohnson(probit())
yeoJohnson(probit())

107

var ~ add(add.sd) + prop(prop.sd) + dt(df) + com
var ~ add(add.sd) + prop(prop.sd) + dt(df) + com
var ~ add(add.sd) + pow(pow.sd, exponent) + dt(c
var ~ add(add.sd) + pow(pow.sd, exponent) + dt(c
var ~ Inorm(add.sd) + dt(df)

var ~ Inorm(NA) + prop(prop.sd) + dt(df)

var ~ Inorm(NA) + pow(pow.sd, exponent) + dt(d
var ~ Inorm(add.sd) + prop(prop.sd) + dt(df) +cot
var ~ Inorm(add.sd) + prop(prop.sd) + dt(df) + cc
var ~ Inorm(add.sd) + pow(pow.sd, exponent) + ¢
var ~ Inorm(add.sd) + pow(pow.sd, exponent) + ¢
var ~ boxCox(lambda) + add(add.sd)+dt(df)

var ~ boxCox(lambda) + prop(prop.sd)+dt(df)
var ~ boxCox(lambda) + pow(pow.sd, exponent)-
var ~ boxCox(lambda) + add(add.sd) + prop(prog
var ~ boxCox(lambda) + add(add.sd) + prop(prog
var ~ boxCox(lambda) + add(add.sd) + pow(pop.
var ~ boxCox(lambda) + add(add.sd) + pow(pop.
var ~ yeoJohnson(lambda) + add(add.sd) + dt(df)
var ~ yeoJohnson(lambda) + prop(prop.sd) + dt(d
var ~ yeoJohnson(lambda) + pow(pow.sd, expone
var ~ yeoJohnson(lambda) + add(add.sd) + prop(]
var ~ yeoJohnson(lambda) + add(add.sd) + prop(]
var ~ yeoJohnson(lambda) + add(add.sd) + pow(j
var ~ yeoJohnson(lambda) + add(add.sd) + pow(j
var ~ logitNorm(logit.sd)+dt(df)

var ~ logitNorm(NA) + prop(prop.sd)+dt(df)

var ~ logitNorm(NA) + pow(pow.sd, exponent) +
var ~ logitNorm(logit.sd) + prop(prop.sd) + dt(df
var ~ logitNorm(logit.sd) + prop(prop.sd) + dt(df
var ~ logitNorm(logit.sd) + pow(pow.sd, exponer
var ~ logitNorm(logit.sd) + pow(pow.sd, exponer
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ yeoJohnson(lambda) + logitNorm(NA) + pt
var ~ yeoJohnson(lambda) + logitNorm(NA) + pc
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ probitNorm(probit.sd) + dt(df)

var ~ probitNorm(NA) + prop(prop.sd) + dt(df)
var ~ probitNorm(NA) + pow(pow.sd, exponent)
var ~ probitNorm(probit.sd) + prop(prop.sd) + dt
var ~ probitNorm(probit.sd) + prop(prop.sd) + dt
var ~ probitNorm(probit.sd) + pow(pow.sd, expot
var ~ probitNorm(probit.sd) + pow(pow.sd, expor
var ~ yeoJohnson(lambda) + probitNorm(probit.s
var ~ yeoJohnson(lambda) + probitNorm(NA) + |

108

power+t
additive+proportional+t
additive+proportional+t
additive+power+t
additive+power+t
constant+cauchy
proportional+cauchy
power+cauchy
additive+proportional+cauchy
additive+proportional+cauchy
additive+power+cauchy
additive+power+cauchy
constant+cauchy
proportional+cauchy
power+cauchy
additive+proportional+cauchy
additive+proportional+cauchy
additive+power+cauchy
additive+power+cauchy
constant+cauchy
proportional+cauchy
power+cauchy
additive+proportional+cauchy
additive+proportional+cauchy
additive+power+cauchy
additive+power+cauchy
constant+cauchy
proportional+cauchy
power+cauchy
additive+proportional+cauchy
additive+proportional+cauchy
additive+power+cauchy
additive+power+cauchy
constant+cauchy
proportional+cauchy
power+cauchy
additive+proportional+cauchy
additive+proportional+cauchy
additive+power+cauchy
additive+power+cauchy
additive+cauchy
proportional+cauchy
power+cauchy
additive+proportional+cauchy
additive+proportional+cauchy
additive+power+cauchy
additive+power+cauchy
constant+cauchy

combined1
combined2
combined1
combined?2

combinedl
combined?2
combined1
combined?2

combined1
combined2
combined1
combined2

combined1
combined2
combinedl
combined?2

combinedl
combined?2
combined1
combined?2

combined1
combined2
combined1
combined2

combined1
combined?2
combinedl
combined?2

yeoJohnson(probit())
yeoJohnson(probit())
yeoJohnson(probit())
yeoJohnson(probit())
yeoJohnson(probit())
None

None

None

None

None

None

None

log

log

log

log

log

log

log

boxCox

boxCox

boxCox

boxCox

boxCox

boxCox

boxCox

yeoJohnson
yeoJohnson
yeoJohnson
yeoJohnson
yeoJohnson
yeoJohnson
yeoJohnson

logit

logit

logit

logit

logit

logit

logit
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
yeoJohnson(logit())
logit

rxode2

var ~ yeoJohnson(lambda) + probitNorm(NA) +
var ~ yeoJohnson(lambda) + probitNorm(probit.s
var ~ yeoJohnson(lambda) + probitNorm(probit.s
var ~ yeoJohnson(lambda) + probitNorm(probit.s
var ~ yeoJohnson(lambda) + probitNorm(probit.s
var ~ add(add.sd) + dcauchy()

var ~ prop(prop.sd) + dcauchy()

var ~ pow(pow.sd, exponent) + dcauchy()

var ~ add(add.sd) + prop(prop.sd) + dcauchy() +
var ~ add(add.sd) + prop(prop.sd) + dcauchy() +
var ~ add(add.sd) + pow(pow.sd, exponent) + dca
var ~ add(add.sd) + pow(pow.sd, exponent) + dca
var ~ Inorm(add.sd) + dcauchy()

var ~ Inorm(NA) + prop(prop.sd) + dcauchy()
var ~ Inorm(NA) + pow(pow.sd, exponent) + dca
var ~ Inorm(add.sd) + prop(prop.sd) + dcauchy()
var ~ Inorm(add.sd) + prop(prop.sd) + dcauchy()
var ~ Inorm(add.sd) + pow(pow.sd, exponent) + d
var ~ Inorm(add.sd) + pow(pow.sd, exponent) + d
var ~ boxCox(lambda) + add(add.sd)+dcauchy()
var ~ boxCox(lambda) + prop(prop.sd)+dcauchy(
var ~ boxCox(lambda) + pow(pow.sd, exponent)-
var ~ boxCox(lambda) + add(add.sd) + prop(pror
var ~ boxCox(lambda) + add(add.sd) + prop(prog
var ~ boxCox(lambda) + add(add.sd) + pow(pop.
var ~ boxCox(lambda) + add(add.sd) + pow(pop.
var ~ yeoJohnson(lambda) + add(add.sd) + dcauc
var ~ yeoJohnson(lambda) + prop(prop.sd) + dca
var ~ yeoJohnson(lambda) + pow(pow.sd, expone
var ~ yeoJohnson(lambda) + add(add.sd) + prop(]
var ~ yeoJohnson(lambda) + add(add.sd) + prop(
var ~ yeoJohnson(lambda) + add(add.sd) + pow(j
var ~ yeoJohnson(lambda) + add(add.sd) + pow(]
var ~ logitNorm(logit.sd)+dcauchy()

var ~ logitNorm(NA) + prop(prop.sd)+dcauchy()
var ~ logitNorm(NA) + pow(pow.sd, exponent) +
var ~ logitNorm(logit.sd) + prop(prop.sd) + dcau
var ~ logitNorm(logit.sd) + prop(prop.sd) + dcau
var ~ logitNorm(logit.sd) + pow(pow.sd, exponer
var ~ logitNorm(logit.sd) + pow(pow.sd, exponer
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ yeoJohnson(lambda) + logitNorm(NA) + pr
var ~ yeoJohnson(lambda) + logitNorm(NA) + p«
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ yeoJohnson(lambda) + logitNorm(logit.sd)
var ~ probitNorm(probit.sd) + dcauchy()

rxode2

proportional+cauchy
power+cauchy
additive+proportional+cauchy
additive+proportional+cauchy
additive+power+cauchy
additive+power+cauchy
additive+cauchy
proportional+cauchy
power+cauchy
additive+proportional+cauchy
additive+proportional+cauchy
additive+power+cauchy
additive+power+cauchy
poission

binomial

beta

chisq

exponential

uniform

weibull

gamma

geometric

negative binomial form #1
negative binomial form #2
ordinal probability
log-likelihood

Value

combinedl
combined?2
combined1
combined?2

combined1
combined?2
combined1
combined2

probit

probit

probit

probit

probit

probit
yeoJohnson(probit())
yeoJohnson(probit())
yeoJohnson(probit())
yeoJohnson(probit())
yeoJohnson(probit())
yeoJohnson(probit())
yeoJohnson(probit())
none

none

none

none

none

none

none

none

none

none

none

none

none

109

var ~ probitNorm(NA) + prop(prop.sd) + dcauch:
var ~ probitNorm(NA) + pow(pow.sd, exponent)
var ~ probitNorm(probit.sd) + prop(prop.sd) + dc
var ~ probitNorm(probit.sd) + prop(prop.sd) + dc
var ~ probitNorm(probit.sd) + pow(pow.sd, expor
var ~ probitNorm(probit.sd) + pow(pow.sd, expot
var ~ yeoJohnson(lambda) + probitNorm(probit.s
var ~ yeoJohnson(lambda) + probitNorm(NA) +
var ~ yeoJohnson(lambda) + probitNorm(NA) +
var ~ yeoJohnson(lambda) + probitNorm(probit.s
var ~ yeoJohnson(lambda) + probitNorm(probit.s
var ~ yeoJohnson(lambda) + probitNorm(probit.s
var ~ yeoJohnson(lambda) + probitNorm(probit.s
cmt ~ dpois(lamba)

cmt ~ dbinom(n, p)

cmt ~ dbeta(alpha, beta)

cmt ~ dchisq(nu)

cmt ~ dexp(r)

cmt ~ dunif(a, b)

cmt ~ dweibull(a, b)

cmt ~ dgamma(a, b)

cmt ~ dgeom(a)

cmt ~ dnbinom(n, p)

cmt ~ dnbinomMu(size, mu)

cmt ~ ¢(p0=0, pl=1, p2=2, 3)

II(cmt) ~ log likelihood expression

An object (environment) of class rxode2 (see Chambers and Temple Lang (2001)) consisting of the
following list of strings and functions:

* *model’ a character string holding the source model specification.
* ‘get.modelVars‘a function that returns a list with 3 character
vectors, ‘params‘, ‘state‘, and ‘lhs‘ of variable names used in the model
specification. These will be output when the model is computed (i.e., the ODE solved by integration).

* ‘solve*{this function solves (integrates) the ODE. This

is done by passing the code to [rxSolve()].

This is as if you called ‘rxSolve(rxode2object,

but returns a matrix instead of a rxSolve object.

=)

‘params’: a numeric named vector with values for every parameter
in the ODE system; the names must correspond to the parameter
identifiers used in the ODE specification;

‘events': an ‘eventTable‘ object describing the
input (e.g., doses) to the dynamic system and observation

110

*

rxode2

sampling time points (see [eventTable()]);

‘inits': a vector of initial values of the state variables
(e.g., amounts in each compartment), and the order in this vector
must be the same as the state variables (e.g., PK/PD compartments);

‘stiff*: a logical (*TRUE by default) indicating whether
the ODE system is stiff or not.

For stiff ODE systems (‘stiff = TRUE‘), ‘rxode2‘ uses

the LSODA (Livermore Solver for Ordinary Differential Equations)
Fortran package, which implements an automatic method switching
for stiff and non-stiff problems along the integration interval,
authored by Hindmarsh and Petzold (2003).

For non-stiff systems (‘stiff = FALSE‘), ‘rxode2‘ uses ‘DOP853",
an explicit Runge-Kutta method of order 8(5, 3) of Dormand and Prince
as implemented in C by Hairer and Wanner (1993).

‘trans_abs‘: a logical (‘FALSE by default) indicating
whether to fit a transit absorption term
(TODO: need further documentation and example);

‘atol': a numeric absolute tolerance (1e-08 by default);
‘rtol': a numeric relative tolerance (1e-06 by default).

The output of \dQuote{solve} is a matrix with as many rows as there

are sampled time points and as many columns as system variables

(as defined by the ODEs and additional assignments in the rxode2 model
code) .}

‘isValid® a function that (naively) checks for model validity,
namely that the C object code reflects the latest model
specification.

‘version® a string with the version of the ‘rxode2®
object (not the package).

‘dynLoad" a function with one ‘force = FALSE‘ argument
that dynamically loads the object code if needed.

*dynUnload® a function with no argument that unloads
the model object code.

*delete" removes all created model files, including C and DLL files.
The model object is no longer valid and should be removed, e.g.,
‘rm(m1)*.

run® deprecated, use ‘solve‘.

\

* “get.index" deprecated.
* ‘getObj‘ internal (not user callable) function.

rxode2 111

Creating rxode2 models

NA

Author(s)
Melissa Hallow, Wenping Wang and Matthew Fidler

References

Chamber, J. M. and Temple Lang, D. (2001) Object Oriented Programming in R. R News, Vol. 1,
No. 3, September 2001. https://cran.r-project.org/doc/Rnews/Rnews_2001-3.pdf.

Hindmarsh, A. C. ODEPACK, A Systematized Collection of ODE Solvers. Scientific Computing, R.
S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pp. 55-64.

Petzold, L. R. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary
Differential Equations. Siam J. Sci. Stat. Comput. 4 (1983), pp. 136-148.

Hairer, E., Norsett, S. P., and Wanner, G. Solving ordinary differential equations I, nonstiff problems.
2nd edition, Springer Series in Computational Mathematics, Springer-Verlag (1993).

Plevyak, J. dparser, https://dparser.sourceforge.net/. Web. 12 Oct. 2015.

See Also
eventTable(), et(), add.sampling(), add.dosing()

Examples

mod <- function() {

ini({
KA <- .291
CL <-18.6
V2 <-40.2
Q <-10.5
V3 <- 297.0
Kin <- 1.0
Kout <- 1.0
EC50 <- 200.0

i)

model ({
A 4-compartment model, 3 PK and a PD (effect) compartment
(notice state variable names 'depot', 'centr', 'peri', 'eff')
C2 <- centr/V2
C3 <- peri/V3
d/dt(depot) <- -KAxdepot;
d/dt(centr) <- KAxdepot - CL*C2 - Q*C2 + QxC3;

d/dt(peri) <- Q*C2 - Q*C3;
d/dt(eff) <- Kin - Koutx(1-C2/(EC50+C2))*eff;
eff(0) <-1

b))

https://cran.r-project.org/doc/Rnews/Rnews_2001-3.pdf
https://dparser.sourceforge.net/

112 rxode2<-

ml <- rxode2(mod)
print(m1)

Step 2 - Create the model input as an EventTable,
including dosing and observation (sampling) events

QD (once daily) dosing for 5 days.

gd <- et(amountUnits = "ug"”, timeUnits = "hours") %>%
et(amt = 10000, addl = 4, ii = 24)

Sample the system hourly during the first day, every 8 hours
then after
qd <- qd %>% et(0:24) %>%
et(from = 24 + 8, to =5 * 24, by = 8)
Step 3 - solve the system

qd.cp <- rxSolve(m1, qd)

head(qd.cp)

rxode2<- Set the function body of an rxUi object while retaining other object
information (like data)

Description

Set the function body of an rxUi object while retaining other object information (like data)

Usage

rxode2(x, envir = environment(x)) <- value

S3 replacement method for class '‘function‘'
rxode2(x, envir = environment(x)) <- value

Default S3 replacement method:
rxode2(x, envir = environment(x)) <- value

rxode(x, envir = environment(x)) <- value

RXODE(x, envir = environment(x)) <- value

rxode2<-

Arguments
X The rxUi object
envir environment where the assignment ocurs
value the value that will be assigned

Value

The rxode2 ui/function

Examples

one.compartment <- function() {

ini({
tka <- log(1.57); label("Ka")
tcl <- log(2.72); label("Cl")
tv <- log(31.5); label("V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

D)

model ({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
d/dt(depot) = -ka * depot
d/dt(center) = ka * depot - cl / v * center
cp = center / v
cp ~ add(add.sd)

D)

3

two.compartment <- function() {
ini({
lka <- 0.45 ; label("Absorption rate (Ka)")
lcl <- 1 ; label("Clearance (CL)")
lve <- 3 ; label("Central volume of distribution (V)")
lvp <- 5 ; label("Peripheral volume of distribution (Vp)")
lg <- 0.1 ; label("Intercompartmental clearance (Q)")
propSd <- @.5 ; label("Proportional residual error (fraction)")
i)
model ({
ka <- exp(lka)
cl <- exp(lcl)
vc <- exp(lvc)
vp <- exp(lvp)
q <= exp(lag)
kel <- cl/vc
k12 <- g/vc
k21 <- qg/vp

113

114 rxOptExpr

d/dt(depot) <- -kaxdepot
d/dt(central) <- kaxdepot - kel*central - kl2xcentral + k21*peripherali
d/dt(peripherall) <- kl12*central - k21xperipherall
cp <- central / vc
cp ~ prop(propSd)
i)
}

ui <- rxode2(one.compartment)

rxode2(ui) <- two.compartment

rxOptExpr Optimize rxode2 for computer evaluation

Description
This optimizes rxode2 code for computer evaluation by only calculating redundant expressions
once.

Usage

rxOptExpr(x, msg = "model"”)

Arguments
X rxode2 model that can be accessed by rxNorm
msg This is the name of type of object that rxode2 is optimizing that will in the
message when optimizing. For example "model" will produce the following
message while optimizing the model:
finding duplicate expressions in model...
Value

Optimized rxode2 model text. The order and type lhs and state variables is maintained while the
evaluation is sped up. While parameters names are maintained, their order may be modified.

Author(s)

Matthew L. Fidler

rxord 115

rxord Simulate ordinal value

Description

Simulate ordinal value

Usage

rxord(...)

Arguments

the probabilities to be simulated. These should sum up to a number below one.

Details

The values entered into the ’rxord’ simulation will simulate the probability of falling each group.
If it falls outside of the specified probabilities, it will simulate the group (number of probabilities
specified + 1)

Value

A number from 1 to the (number of probabilities specified + 1)

Author(s)
Matthew L. Fidler

Examples

This will give values 1, and 2
rxord(0.5)
rxord(0.5)
rxord(0@.5)
rxord(0.5)

This will give values 1, 2 and 3
rxord(0.3, 0.3)
rxord(@.3, 0.3)
rxord(@.3, 0.3)

116

rxParams

rxParams

Parameters specified by the model

Description

This returns the model’s parameters that are required to solve the ODE system, and can be used to
pipe parameters into an rxode2 solve

Usage

rxParams(obj, ...)

S3 method for class
rxParams (

obj,
constants = TRUE,

L

params = NULL,

inits = NULL,
iCov = NULL,
keep = NULL,
thetaMat = NULL,
omega = NULL,
dfSub = NULL,
sigma = NULL,
dfObs = NULL,
nSub = NULL,
nStud = NULL

)

S3 method for class

rxParams (
obj,

constants = TRUE,

params = NULL,

inits = NULL,
iCov = NULL,
keep = NULL,
thetaMat = NULL,
omega = NULL,
dfSub = NULL,
sigma = NULL,
dfObs = NULL,
nSub = NULL,
nStud = NULL

'rxode2'

'rxSolve'

rxParams

S3 method for class

rxParams (
ObJ ’

L

117

'rxEt'

params = NULL,

)

rxode?2 family of objects

Other arguments including scaling factors for each compartment. This includes
S# = numeric will scale a compartment # by a dividing the compartment amount
by the scale factor, like NONMEM.

is a boolean indicting if constants should be included in the list of parameters.
Currently rxode?2 parses constants into variables in case you wish to change them
without recompiling the rxode2 model.

a numeric named vector with values for every parameter in the ODE system; the
names must correspond to the parameter identifiers used in the ODE specifica-
tion;

a vector of initial values of the state variables (e.g., amounts in each compart-
ment), and the order in this vector must be the same as the state variables (e.g.,
PK/PD compartments);

A data frame of individual non-time varying covariates to combine with the
events dataset by merge.

Columns to keep from either the input dataset or the iCov dataset. With the iCov
dataset, the column is kept once per line. For the input dataset, if any records
are added to the data LOCF (Last Observation Carried forward) imputation is
performed.

Named theta matrix.

inits = NULL,
iCov = NULL,
keep = NULL,
thetaMat = NULL,
omega = NULL,
dfSub = NULL,
sigma = NULL,
dfobs = NULL,
nSub = NULL,
nStud = NULL

)

rxParam(obj,

Arguments

obj

constants

params

inits

iCov

keep

thetaMat

omega

Estimate of Covariance matrix. When omega is a list, assume it is a block matrix
and convert it to a full matrix for simulations. When omega is NA and you are
using it with a rxode2 ui model, the between subject variability described by
the omega matrix are set to zero.

118 rxPkg

dfSub Degrees of freedom to sample the between subject variability matrix from the
inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.

sigma Named sigma covariance or Cholesky decomposition of a covariance matrix.
The names of the columns indicate parameters that are simulated. These are
simulated for every observation in the solved system. When sigma is NA and
you are using it with a rxode2 ui model, the unexplained variability described
by the sigma matrix are set to zero.

dfObs Degrees of freedom to sample the unexplained variability matrix from the in-
verse Wishart distribution (scaled) or scaled inverse chi squared distribution.
nSub Number between subject variabilities (ETAs) simulated for every realization of
the parameters.
nStud Number virtual studies to characterize uncertainty in estimated parameters.
Value

When extracting the parameters from an rxode2 model, a character vector listing the parameters in
the model.

Author(s)

Matthew L.Fidler

See Also

Other Query model information: rxDfdy(), rxInits(), rxLhs(), rxModelVars(), rxState()

rxPkg Creates a package from compiled rxode2 models

Description

Creates a package from compiled rxode2 models

Usage
rxPkg(
package,
wd = getwd(),
action = c("install”, "build", "binary"”, "create"),
license = c("gpl3”, "lgpl"”, "mit”, "agpl3"),
name = "Firstname Lastname”,

fields = list()

IXpois 119

Arguments
. Models to build a package from
package String of the package name to create
wd character string with a working directory where to create a subdirectory accord-
ing to modName. When specified, a subdirectory named after the “modName.d”
will be created and populated with a C file, a dynamic loading library, plus var-
ious other working files. If missing, the files are created (and removed) in the
temporary directory, and the rxode2 DLL for the model is created in the current
directory named rx_????_platform, for example rx_129f8f97fb94a87ca49ca8dafe691ele_1i386.d1]
action Type of action to take after package is created
license is the type of license for the package.
name Full name of author
fields A named list of fields to add to DESCRIPTION, potentially overriding default val-
ues. See use_description() for how you can set personalized defaults using
package options.
Value

this function returns nothing and is used for its side effects

Author(s)
Matthew Fidler

rxpois Simulate random Poisson variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www . johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxpois(lambda, n = 1L, ncores = 1L)

Arguments
lambda vector of (non-negative) means.
n number of random values to return.
ncores Number of cores for the simulation

rxnorm simulates using the threefry sitmo generator.

rxnormV used to simulate with the vandercorput simulator, but since it didn’t
satisfy the normal properties it was changed to simple be an alias of rxnorm. It
is no longer supported in rxode2({3}) blocks

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

120 rxPp

Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number

of cores used.

Value

poission random number deviates

Examples

Use threefry engine

rxpois(lambda
rxpois(lambda

3, n = 10) # with rxpois you have to explicitly state n
3, n =10, ncores = 2) # You can parallelize the simulation using openMP

rxpois(4) ## The first arguments are the lambda parameter

This example uses ‘rxpois‘ directly in the model

rx <- function() {
model ({
a <- rxpois(3)
1))
}

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxPp Simulate a from a Poisson process

Description

Simulate a from a Poisson process

tmax

randomOrder

Arguments

n
lambda

gamma

prob

to

tmax

randomOrder

Value

121

FALSE

Number of time points to simulate in the Poisson process
Rate of Poisson process

Asymmetry rate of Poisson process. When gamma=1.0, this simulates a ho-
mogenous Poisson process. When gamma<1.0, the Poisson process has more
events early, when gamma > 1.0, the Poisson process has more events late in the
process.

When gamma is non-zero, the tmax should not be infinite but indicate the end
of the Poisson process to be simulated. In most pharamcometric cases, this will
be the end of the study. Internally this uses a rate of:

1(t) = lambdagamma(t/tmax)”*(gamma-1)

When specified, this is a probability function with one argument, time, that gives
the probability that a Poisson time t is accepted as a rejection time.

the starting time of the Poisson process
the maximum time of the Poisson process

when TRUE randomize the order of the Poisson events. By default (FALSE) it
returns the Poisson process is in order of how the events occurred.

This returns a vector of the Poisson process times; If the dropout is >= tmax, then all the rest of the
times are = tmax to indicate the dropout is equal to or after tmax.

Author(s)

Matthew Fidler

Examples

Sample homogenous Poisson process of rate 1/10

rxPp(10, 1 / 10)

Sample inhomogenous Poisson rate of 1/10

122 rxPreterredDistributionName

rxPp(1@, 1 / 10, gamma = 2, tmax = 100)

Typically the Poisson process times are in a sequential order,
using randomOrder gives the Poisson process in random order

rxPp(1@, 1 / 10, gamma = 2, tmax = 10, randomOrder = TRUE)
This uses an arbitrary function to sample a non-homogenous Poisson process
rxPp(10, 1 / 10, prob = function(x) {

1/(1+abs(x))
1)

rxPreferredDistributionName
Change distribution name to the preferred distribution name term

Description

This is determined by the internal preferred condition name list .errIdenticalDists

Usage

rxPreferredDistributionName(dist)

Arguments

dist This is the input distribution

Value

Preferred distribution term

Author(s)
Matthew Fidler

Examples

rxPreferredDistributionName("dt")
rxPreferredDistributionName("add")
can be vectorized

rxPreferredDistributionName(c("add","dt"))

rxProgress 123

rxProgress rxode?2 progress bar functions

Description

rxProgress sets up the progress bar

Usage

rxProgress(num, core = QL)

rxTick()
rxProgressStop(clear = TRUE)
rxProgressAbort(error = "Aborted calculation”)
Arguments
num Tot number of operations to track
core Number of cores to show. If below 1, don’t show number of cores
clear Boolean telling if you should clear the progress bar after completion (as if it
wasn’t displayed). By default this is TRUE
error With rxProgressAbort this is the error that is displayed
Details

rxTick is a progress bar tick
rxProgressStop stop progress bar

rxProgressAbort shows an abort if rxProgressStop wasn’t called.

Value

All return NULL invisibly.

Author(s)
Matthew L. Fidler

Examples

f <= function() {
on.exit({
rxProgressAbort ()

b))
rxProgress(100)

124 rxRename

for (i in 1:100) {
rxTick()
Sys.sleep(1 / 100)
}
rxProgressStop()
}

O

rxRemoveControl rxRemoveControl options for Ul object

Description

rxRemoveControl options for UI object

Usage

rxRemoveControl (ui)
Arguments

ui rxode2 ui object
Value

Nothing, called for side effects

Author(s)

Matthew L. Fidler

rxRename Rename items inside of a rxode2 ui model

Description

rxRename () changes the names of individual variables, lhs, and ode states using new_name = old_name
syntax

rxRename 125

Usage
rxRename(.data, ..., envir = parent.frame())
.rxRename(.data, ..., envir = parent.frame())
rename.rxUi(.data, ...)
rename.function(.data, ...)

S3 method for class 'rxUi'
rxRename(.data, ...)

S3 method for class '‘function‘'
rxRename(.data, ...)

Default S3 method:

rxRename(.data, ...)
Arguments
.data rxode2 ui function, named data to be consistent with dplyr: : rename()

rename items

envir Environment for evaluation

Details
This is similar to dplyr’s rename () function. When dplyr is loaded, the s3 methods work for the
ui objects.

Note that the . rxRename() is the internal function that is called when renaming and is likely not
what you need to call unless you are writing your own extension of the function

Value

New model with items renamed

Author(s)
Matthew L. Fidler

Examples

ocmt <- function() {
ini({
tka <- exp(0.45) # Ka
tcl <- exp(1) # Cl
This works with interactive models
You may also label the preceding line with label("”label text")
tv <- exp(3.45) # log V

126 rxResidualError

the label("Label name") works with all models
add.sd <- 0.7

1))

model ({
ka <- tka
cl <- tcl
v <- tv
d/dt(depot) = -ka * depot
d/dt(center) = ka * depot - cl / v * center
cp = center / v
cp ~ add(add.sd)

D)

}

ocmt %>% rxRename(cpParent=cp)

rxReservedKeywords A list and description of rxode2 supported reserved keywords

Description

A list and description of rxode2 supported reserved keywords

Usage

rxReservedKeywords

Format
A data frame with 3 columns and 31 rows
Reserved Name Reserved Keyword Name

Meaning Reserved Keyword Meaning

Alias Keyword Alias

rxResidualError A description of Rode?2 supported residual errors

Description

A description of Rode2 supported residual errors

Usage

rxResidualError

xS 127

Format

A data frame with 6 columns and 181 rows

Error model A description of the type of residual error

Functional Form For additive and proportional what functional form is used
Transformation The type of transformation that is done on the DV and the prediction
code Example code for the residual error type

addProp The type of add+prop residual error default that would be equivalent

Ihs what the left handed side of the specification represents, either a response variable, or a com-
partment specification

rxs Load a model into a symengine environment

Description

Load a model into a symengine environment

Usage

rxS(x, doConst = TRUE, promoteLinSens = FALSE, envir = parent.frame())

Arguments
X rxode?2 object
doConst Load constants into the environment as well.

promoteLinSens Promote solved linear compartment systems to sensitivity-based solutions.

envir default is NULL; Environment to put symengine variables in.

Value

rxode2/symengine environment

Author(s)

Matthew Fidler

128 rxSetCovariateNamesForPiping
rxSetControl rxSetControl options for Ul object
Description
rxSetControl options for UI object
Usage
rxSetControl(ui, control)
Arguments
ui rxode2 ui object
control Default value
Value
Nothing, called for side effects
Author(s)

Matthew L. Fidler

rxSetCovariateNamesForPiping
Assign covariates for piping

Description

Assign covariates for piping

Usage

rxSetCovariateNamesForPiping(covariates = NULL)

Arguments
covariates NULL (for no covariates), or the list of covariates. nlmixr uses this function to
set covariates if you pipe from a nlmixr fit.
Value

Nothing, called for side effects

rxSetCovariateNamesForPiping 129

Author(s)

Matthew L. Fidler

Examples

First set the name of known covariates
Note this is case sensitive

rxSetCovariateNamesForPiping(c("WT","HT", "TC"))

one.compartment <- function() {
ini({
tka <- 0.45 ; label("Log Ka")
tcl <- 1 ; label("Log C1")
tv <- 3.45 ; label("Log V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.err <- 0.7
»
model ({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
d / dt(depot) <- -ka * depot
d/dt(depot) <- -ka * depot
d / dt(center) <- ka * depot - cl / v x center
cp <- center / v
cp ~ add(add.err)
D
3

now TC is detected as a covariate instead of a population parameter

one.compartment %>%
model ({ka <- exp(tka + eta.ka + TC * cov_C)})

You can turn it off by simply adding it back
rxSetCovariateNamesForPiping()

one.compartment %>%
model ({ka <- exp(tka + eta.ka + TC * cov_C)})

The covariates you set with ‘rxSetCovariateNamesForPiping()*
are turned off every time you solve (or fit in nlmixr)

130 rxSetPipingAuto

rxSetPipingAuto Set the variables for the model piping automatic covarite selection

Description

Set the variables for the model piping automatic covarite selection

Usage
rxSetPipingAuto(
thetamodelVars = rex::rex(or("tv", "t", "pop", "POP", "Pop", "TV", "T", "cov", "err",
”eff”)),
covariateExceptions = rex::rex(start, or("wt”, "sex”, "crcl”, "kout"), end),

etaPartS = C(”eta“, “ETA“, "Eta", “ppV“, “PPV“, "PpV", ”iiV”, "IiV", ”bSV”, ”BSV”,
“BSV“, ”bpv”, anVn’ ”BPV”, "pSV", ”PSV”, ”PSV”)

Arguments

thetamodelVars This is the prefixes for the theta model variables in a regular expression

covariateExceptions
This is a regular expression of covariates that should always be covariates

etaParts This is the list of eta prefixes/post-fixes that identify a variable as a between
subject variability
Details

This is called once at startup to set the defaults, though you can change this if you wish so that
piping can work differently for your individual setup

Value

Nothing, called for side effects

Author(s)

Matthew L. Fidler

rxSetProd 131

rxSetProd Defunct setting of product

Description

Defunct setting of product

Usage

rxSetProd(type = c("long double”, "double”, "logify"))

Arguments

type used to be type of product

Value

nothing

rxSetProgressBar Set timing for progress bar

Description

Set timing for progress bar

Usage

rxSetProgressBar(seconds = 1)

Arguments
seconds This sets the number of seconds that need to elapse before drawing the next seg-
ment of the progress bar. When this is zero or below this turns off the progress
bar.
Value

nothing, used for side effects

Author(s)
Matthew Fidler

132 rxShiny

rxSetSum Defunct setting of sum

Description

Defunct setting of sum

Usage

rxSetSum(type = c("pairwise”, "fsum”, "kahan", "neumaier”, "c"))

Arguments

type used to be type of product

Value

nothing

rxShiny Use Shiny to help develop an rxode2 model

Description

Use Shiny to help develop an rxode2 model

Usage

rxShiny(
object,
params = NULL,
events = NULL,
inits = NULL,

data = data.frame()
)

S3 method for class 'rxSolve'
rxShiny(

object,

params = NULL,

events = NULL,

inits = NULL,

data = data.frame()

rxSimThetaOmega 133

Default S3 method:

rxShiny(
object = NULL,
params = NULL,
events = NULL,
inits = NULL,

data = data.frame()

)
Arguments
object A rxode2 family of objects. If not supplied a 2-compartment indirect effect
model is used. If it is supplied, use the model associated with the rxode2 object
for the model exploration.
params Initial parameters for model
events Event information (currently ignored)
inits Initial estimates for model
Other arguments passed to rxShiny. Currently doesn’t do anything.
data Any data that you would like to plot. If the data has a time variable as well as a
compartment or calculated variable that matches the rxode2 model, the data will
be added to the plot of a specific compartment or calculated variable.
Value

Nothing; Starts a shiny server

Author(s)
Zufar Mulyukov and Matthew L. Fidler

rxSimThetaOmega Simulate Parameters from a Theta/Omega specification

Description

Simulate Parameters from a Theta/Omega specification

Usage
rxSimThetaOmega(
params = NULL,
omega = NULL,

omegaDf = NULL,
omegaLower = as.numeric(c(R_NegInf)),

134

rxSimThetaOmega

omegaUpper = as.numeric(c(R_PosInf)),
omegalsChol = FALSE,

omegaSeparation = "auto"”,

omegaXform = 1L,

nSub = 1L,

thetaMat = NULL,
thetalLower = as.numeric(c(R_NegInf)),

thetaUpper = as.numeric(c(R_PosInf)),
thetaDf = NULL,
thetaIsChol = FALSE,
nStud = 1L,
sigma = NULL,
sigmaLower = as.numeric(c(R_NegInf)),
sigmaUpper = as.numeric(c(R_PosInf)),
sigmaDf = NULL,
sigmalsChol = FALSE,
sigmaSeparation = "auto”,
sigmaXform = 1L,
nCoresRV = 1L,
nObs = 1L,
dfSub = 0,
dfObs = 0,
simSubjects = TRUE,
simVariability = as.logical (c(NA_LOGICAL))
)
Arguments
params Named Vector of rxode2 model parameters
omega Estimate of Covariance matrix. When omega is a list, assume it is a block matrix
and convert it to a full matrix for simulations. When omega is NA and you are
using it with a rxode2 ui model, the between subject variability described by
the omega matrix are set to zero.
omegaDf The degrees of freedom of a t-distribution for simulation. By default this is NULL
which is equivalent to Inf degrees, or to simulate from a normal distribution
instead of a t-distribution.
omegalower Lower bounds for simulated ETAs (by default -Inf)
omegalUpper Upper bounds for simulated ETAs (by default Inf)
omegalsChol Indicates if the omega supplied is a Cholesky decomposed matrix instead of the
traditional symmetric matrix.
omegaSeparation

Omega separation strategy
Tells the type of separation strategy when simulating covariance with parameter
uncertainty with standard deviations modeled in the thetaMat matrix.

e "1kj" simulates the correlation matrix from the rLKJ1 matrix with the dis-
tribution parameter eta equal to the degrees of freedom nu by (nu-1)/2

rxSimThetaOmega

omegaXform

nSub

thetaMat
thetalLower
thetaUpper
thetaDf

thetaIsChol

nStud

sigma

sigmalower
sigmaUpper
sigmaDf

135

e "separation” simulates from the identity inverse Wishart covariance ma-
trix with nu degrees of freedom. This is then converted to a covariance
matrix and augmented with the modeled standard deviations. While com-
putationally more complex than the "1kj" prior, it performs better when
the covariance matrix size is greater or equal to 10

* "auto” chooses "1kj" when the dimension of the matrix is less than 10
and "separation” when greater than equal to 10.

When taking omega values from the thetaMat simulations (using the separation
strategy for covariance simulation), how should the thetaMat values be turned
int standard deviation values:

e identity This is when standard deviation values are directly modeled by
the params and thetaMat matrix

e variance This is when the params and thetaMat simulates the variance
that are directly modeled by the thetaMat matrix

¢ log This is when the params and thetaMat simulates log(sd)

e nlmixrSqrt This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the x*2 modeled along the diagonal.
This only works with a diagonal matrix.

e nlmixrLog This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the exp(x*2) along the diagonal. This
only works with a diagonal matrix.

e nlmixrIdentity This is when the params and thetaMat simulates the in-
verse cholesky decomposed matrix. This only works with a diagonal ma-
trix.

Number between subject variabilities (ETAs) simulated for every realization of
the parameters.

Named theta matrix.
Lower bounds for simulated population parameter variability (by default -Inf)
Upper bounds for simulated population unexplained variability (by default Inf)

The degrees of freedom of a t-distribution for simulation. By default this is NULL
which is equivalent to Inf degrees, or to simulate from a normal distribution
instead of a t-distribution.

Indicates if the theta supplied is a Cholesky decomposed matrix instead of the
traditional symmetric matrix.

Number virtual studies to characterize uncertainty in estimated parameters.
Named sigma covariance or Cholesky decomposition of a covariance matrix.
The names of the columns indicate parameters that are simulated. These are
simulated for every observation in the solved system. When sigma is NA and
you are using it with a rxode2 ui model, the unexplained variability described
by the sigma matrix are set to zero.

Lower bounds for simulated unexplained variability (by default -Inf)
Upper bounds for simulated unexplained variability (by default Inf)

Degrees of freedom of the sigma t-distribution. By default it is equivalent to
Inf, or a normal distribution.

136

sigmalsChol

sigmaSeparation

sigmaXform

nCoresRVY

nObs
dfSub

dfObs

simSubjects

simVariability

rxSimThetaOmega

Boolean indicating if the sigma is in the Cholesky decomposition instead of a
symmetric covariance

separation strategy for sigma;

Tells the type of separation strategy when simulating covariance with parameter
uncertainty with standard deviations modeled in the thetaMat matrix.

e "1kj" simulates the correlation matrix from the rLKJ1 matrix with the dis-
tribution parameter eta equal to the degrees of freedom nu by (nu-1)/2

* "separation” simulates from the identity inverse Wishart covariance ma-
trix with nu degrees of freedom. This is then converted to a covariance
matrix and augmented with the modeled standard deviations. While com-
putationally more complex than the "1kj" prior, it performs better when
the covariance matrix size is greater or equal to 10

* "auto” chooses "1kj" when the dimension of the matrix is less than 10
and "separation” when greater than equal to 10.

When taking sigma values from the thetaMat simulations (using the separation
strategy for covariance simulation), how should the thetaMat values be turned
int standard deviation values:

e identity This is when standard deviation values are directly modeled by
the params and thetaMat matrix

e variance This is when the params and thetaMat simulates the variance
that are directly modeled by the thetaMat matrix

¢ log This is when the params and thetaMat simulates log(sd)

¢ nlmixrSqrt This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the x*2 modeled along the diagonal.
This only works with a diagonal matrix.

e nlmixrLog This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the exp(x*2) along the diagonal. This
only works with a diagonal matrix.

e nlmixrIdentity This is when the params and thetaMat simulates the in-
verse cholesky decomposed matrix. This only works with a diagonal ma-
trix.

Number of cores used for the simulation of the sigma variables. By default this
is 1. To reproduce the results you need to run on the same platform with the
same number of cores. This is the reason this is set to be one, regardless of what
the number of cores are used in threaded ODE solving.

Number of observations to simulate (with sigma matrix)

Degrees of freedom to sample the between subject variability matrix from the
inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.

Degrees of freedom to sample the unexplained variability matrix from the in-
verse Wishart distribution (scaled) or scaled inverse chi squared distribution.

boolean indicated rxode2 should simulate subjects in studies (TRUE, default) or
studies (FALSE)

determines if the variability is simulated. When NA (default) this is determined
by the solver.

rxSolve

Value

a data frame with the simulated subjects

Author(s)
Matthew L.Fidler

137

rxSolve Options, Solving & Simulation of an ODE/solved system

Description

This uses rxode2 family of objects, file, or model specification to solve a ODE system. There are
many options for a solved rxode2 model, the first are the required object, and events with the

some-times optional params and inits.

Usage

rxSolve(
object,
params = NULL,
events = NULL,
inits = NULL,
scale = NULL,

method = c("liblsoda”, "lsoda”, "dop853", "indLin"),

sigdig = NULL,

atol = 1e-08,

rtol = 1e-06,
maxsteps = 70000L,
hmin = 0,

hmax = NA_real_,
hmaxSd = 0,

hini = 0,

maxordn = 12L,
maxords = 5L,

L

cores,

covsInterpolation = c("locf"”, "linear"”, "nocb”, "midpoint"”),

addCov = TRUE,

sigma = NULL,
sigmaDf = NULL,
sigmalLower = -Inf,
sigmaUpper = Inf,
nCoresRV = 1L,
sigmalsChol = FALSE,

sigmaSeparation = c("auto”, "lkj", "separation"),
sigmaXform = c("identity"”, "variance”, "log"”, "nlmixrSqrt"”, "nlmixrlLog",

138

"nlmixrIdentity"”),

nDisplayProgress = 10000L,
amountUnits = NA_character_,

timeUnits = "hours”,
theta = NULL,
thetalLower = -Inf,
thetaUpper = Inf,
eta = NULL,
addDosing = FALSE,
stateTrim = Inf,
updateObject = FALSE,
omega = NULL,
omegaDf = NULL,
omegalsChol = FALSE,

omegaSeparation = c("auto”, "lkj", "separation”

rxSolve

omegaXform = c("variance”, "identity"”, "log", "nlmixrSqrt", "nlmixrLog",

"nlmixrIdentity”),
omegaLower = -Inf,
omegaUpper = Inf,
nSub = 1L,
thetaMat = NULL,
thetaDf = NULL,
thetalsChol = FALSE,

nStud = 1L,
dfSub = 9,
dfObs = 0,

returnType = c("rxSolve”, "matrix”, "data.frame”, "data

"tbl”, "tibble"),

seed = NULL,
nsim = NULL,
minSS = 10L,

maxSS = 1000L,
infSSstep = 12,
strictSS = TRUE,
istateReset = TRUE,
subsetNonmem = TRUE,
maxAtolRtolFactor = 0.1,
from = NULL,

to = NULL,

by = NULL,

length.out = NULL,
iCov = NULL,

keep = NULL,
indLinPhiTol = 1e-07,
indLinPhiM = oL,

indLinMatExpType = c("expokit”, "Al-Mohy"”, "arma"),

indLinMatExpOrder = 6L,
drop = NULL,

.frame.TBS"”, "data.table”

rxSolve 139

idFactor = TRUE,
mxhnil = @,

hmxi = @,
warnIdSort = TRUE,
warnDrop = TRUE,
ssAtol = 1e-08,
ssRtol = 1e-06,
safeZero = TRUE,

sumType = c("pairwise”, "fsum”, "kahan"”, "neumaier", "c"),
prodType = c("long double”, "double”, "logify"),
sensType = c("advan”, "autodiff", "forward”, "central”),

linDiff = c(tlag = 1.5e-05, f = 1.5e-05, rate = 1.5e-05, dur = 1.5e-05, tlag2 =
1.5e-05, f2 = 1.5e-05, rate2 = 1.5e-05, dur2 = 1.5e-05),

linDiffCentral = c(tlag = TRUE, f = TRUE, rate = TRUE, dur = TRUE, tlag2 = TRUE, f2 =
TRUE, rate2 = TRUE, dur2 = TRUE),

resample = NULL,

resampleID = TRUE,

maxwhile = 1e+05,

atolSens = 1e-08,

rtolSens = 1e-06,

ssAtolSens = 1e-08,

ssRtolSens = 1e-06,

simVariability = NA,

nLlikAlloc = NULL,

useStdPow = FALSE,

naTimeHandle = c("ignore"”, "warn", "error"),

addlKeepsCov = FALSE,

add1lDropSs = TRUE,

ssAtDoseTime = TRUE,

ss2cancelAllPending = FALSE,

envir = parent.frame()

)

S3 method for class '‘function''
rxSolve(

object,

params = NULL,

events = NULL,

inits = NULL,

theta = NULL,

eta = NULL,

envir = parent.frame()

)

S3 method for class 'rxUi'
rxSolve(
object,

140

'rxode2tos’

params = NULL,

events = NULL,

inits = NULL,

theta = NULL,

eta = NULL,

envir = parent.frame()
)
S3 method for class
rxSolve(

object,

params = NULL,
events = NULL,

'nlmixr2FitData’

inits = NULL,

theta = NULL,

eta = NULL,

envir = parent.frame()
)
S3 method for class
rxSolve(

object,

params = NULL,
events = NULL,

'nlmixr2FitCore’

inits = NULL,

theta = NULL,

eta = NULL,

envir = parent.frame()
)
S3 method for class
rxSolve(

object,

params = NULL,
events = NULL,

inits = NULL,
theta = NULL,
eta = NULL,

envir = parent.frame()

)

Default S3 method:
rxSolve(
object,

rxSolve

rxSolve
params = NULL,
events = NULL,
inits = NULL,
theta = NULL,
eta = NULL,

envir = parent.

)

S3 method for
update(object,

S3 method for
predict(object,

S3 method for
predict(object,

S3 method for
predict(object,

S3 method for
predict(object,

S3 method for
predict(object,

S3 method for
predict(object,

S3 method for
simulate(object,

S3 method for
simulate(object,

S3 method for
simulate(object,

S3 method for
solve(a, b, ...)

S3 method for
solve(a, b, ...)

S3 method for
solve(a, b, ...)

frame()

class 'rxSolve'

class 'rxode2'

class '‘function*'

class 'rxUi'

class 'rxSolve'

class 'rxEt'

class 'rxParams'

class 'rxode2'
nsim = 1L, seed

NULL,

class 'rxSolve'
nsim = 1L, seed = NULL,

class 'rxParams'
nsim = 1L, seed

NULL,

class 'rxSolve'

class 'rxUi'

class '‘function''

L)

L)

.2

141

142

rxSolve

S3 method for class 'rxode2'

solve(a, b,

S3 method for class 'rxParams
solve(a, b,

L)

)

S3 method for class 'rxEt'

solve(a, b,

rxControl(
-
params =
events
inits =
envir =

Arguments

object

params

events

inits

scale

method

sigdig

.)

NULL,
NULL,

parent.frame()

is a either a rxode2 family of objects, or a file-name with a rxode2 model speci-
fication, or a string with a rxode2 model specification.

a numeric named vector with values for every parameter in the ODE system; the
names must correspond to the parameter identifiers used in the ODE specifica-
tion;

an eventTable object describing the input (e.g., doses) to the dynamic system
and observation sampling time points (see eventTable());

a vector of initial values of the state variables (e.g., amounts in each compart-
ment), and the order in this vector must be the same as the state variables (e.g.,
PK/PD compartments);

a numeric named vector with scaling for ode parameters of the system. The
names must correspond to the parameter identifiers in the ODE specification.
Each of the ODE variables will be divided by the scaling factor. For example
scale=c(center=2) will divide the center ODE variable by 2.

The method for solving ODEs. Currently this supports:

e "liblsoda” thread safe Isoda. This supports parallel thread-based solving,
and ignores user Jacobian specification.

* "lsoda"” — LSODA solver. Does not support parallel thread-based solving,
but allows user Jacobian specification.

* "dop853" — DOP853 solver. Does not support parallel thread-based solving
nor user Jacobian specification

* "indLin" — Solving through inductive linearization. The rxode2 dll must
be setup specially to use this solving routine.

Specifies the "significant digits" that the ode solving requests. When specified
this controls the relative and absolute tolerances of the ODE solvers. By de-
fault the tolerance is @.5%10* (-sigdig-2) for regular ODEs. For the sensitiv-
ity equations the default is @.5%x10* (-sigdig-1.5) (sensitivity changes only

rxSolve

atol

rtol

maxsteps

hmin

hmax

hmaxSd

hini

maxordn

maxords

cores

143

applicable for liblsoda). This also controls the atol/rtol of the steady state
solutions. The ssAtol/ssRtol is 0.5%10*(-sigdig) and for the sensitivities
0.5%x10\"*(-sigdig+@.625). By default this is unspecified (NULL) and uses the
standard atol/rtol.

a numeric absolute tolerance (1e-8 by default) used by the ODE solver to deter-
mine if a good solution has been achieved; This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

a numeric relative tolerance (1e-6 by default) used by the ODE solver to deter-
mine if a good solution has been achieved. This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

maximum number of (internally defined) steps allowed during one call to the
solver. (5000 by default)

The minimum absolute step size allowed. The default value is 0.

The maximum absolute step size allowed. When hmax=NA (default), uses the
average difference + hmaxSd*sd in times and sampling events. The hmaxSd is a
user specified parameter and which defaults to zero. When hmax=NULL rxode2
uses the maximum difference in times in your sampling and events. The value 0
is equivalent to infinite maximum absolute step size.

The number of standard deviations of the time difference to add to hmax. The
default is O

The step size to be attempted on the first step. The default value is determined
by the solver (when hini = 0)

The maximum order to be allowed for the nonstiff (Adams) method. The default
is 12. It can be between 1 and 12.

The maximum order to be allowed for the stiff (BDF) method. The default value
is 5. This can be between 1 and 5.

Other arguments including scaling factors for each compartment. This includes
S# = numeric will scale a compartment # by a dividing the compartment amount
by the scale factor, like NONMEM.

Number of cores used in parallel ODE solving. This is equivalent to calling
setRxThreads()

covsInterpolation

addCov

specifies the interpolation method for time-varying covariates. When solving
ODE:s it often samples times outside the sampling time specified in events.
When this happens, the time varying covariates are interpolated. Currently this
can be:

* "linear” interpolation, which interpolates the covariate by solving the line
between the observed covariates and extrapolating the new covariate value.
e "constant” — Last observation carried forward (the default).
* "NOCB" — Next Observation Carried Backward. This is the same method
that NONMEM uses.
e "midpoint” Last observation carried forward to midpoint; Next observa-
tion carried backward to midpoint.
A boolean indicating if covariates should be added to the output matrix or data
frame. By default this is disabled.

144 rxSolve

sigma Named sigma covariance or Cholesky decomposition of a covariance matrix.
The names of the columns indicate parameters that are simulated. These are
simulated for every observation in the solved system. When sigma is NA and
you are using it with a rxode2 ui model, the unexplained variability described
by the sigma matrix are set to zero.

sigmaDf Degrees of freedom of the sigma t-distribution. By default it is equivalent to
Inf, or a normal distribution.

sigmalower Lower bounds for simulated unexplained variability (by default -Inf)

sigmaUpper Upper bounds for simulated unexplained variability (by default Inf)

nCoresRV Number of cores used for the simulation of the sigma variables. By default this

is 1. To reproduce the results you need to run on the same platform with the
same number of cores. This is the reason this is set to be one, regardless of what
the number of cores are used in threaded ODE solving.

sigmalsChol Boolean indicating if the sigma is in the Cholesky decomposition instead of a
symmetric covariance

sigmaSeparation
separation strategy for sigma;
Tells the type of separation strategy when simulating covariance with parameter
uncertainty with standard deviations modeled in the thetaMat matrix.

e "1kj" simulates the correlation matrix from the rLKJ1 matrix with the dis-
tribution parameter eta equal to the degrees of freedom nu by (nu-1)/2

* "separation” simulates from the identity inverse Wishart covariance ma-
trix with nu degrees of freedom. This is then converted to a covariance
matrix and augmented with the modeled standard deviations. While com-
putationally more complex than the "1kj" prior, it performs better when
the covariance matrix size is greater or equal to 10

* "auto"” chooses "1kj" when the dimension of the matrix is less than 10
and "separation” when greater than equal to 10.

sigmaXform When taking sigma values from the thetaMat simulations (using the separation
strategy for covariance simulation), how should the thetaMat values be turned
int standard deviation values:

e identity This is when standard deviation values are directly modeled by
the params and thetaMat matrix

e variance This is when the params and thetaMat simulates the variance
that are directly modeled by the thetaMat matrix

¢ log This is when the params and thetaMat simulates log(sd)

* nlmixrSqrt This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the x*2 modeled along the diagonal.
This only works with a diagonal matrix.

nlmixrLog This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the exp(x*2) along the diagonal. This
only works with a diagonal matrix.

e nlmixrIdentity This is when the params and thetaMat simulates the in-
verse cholesky decomposed matrix. This only works with a diagonal ma-
trix.

rxSolve

145

nDisplayProgress

amountUnits

timeUnits

theta
thetalLower
thetaUpper
eta

addDosing

stateTrim

updateObject

omega

omegaDf

omegalsChol

An integer indicating the minimum number of c-based solves before a progress
bar is shown. By default this is 10,000.

This supplies the dose units of a data frame supplied instead of an event table.
This is for importing the data as an rxode2 event table.

This supplies the time units of a data frame supplied instead of an event table.
This is for importing the data as an rxode2 event table.

A vector of parameters that will be named THETA\[#\] and added to parameters
Lower bounds for simulated population parameter variability (by default -Inf)
Upper bounds for simulated population unexplained variability (by default Inf)
A vector of parameters that will be named ETA\[#\] and added to parameters

Boolean indicating if the solve should add rxode2 EVID and related columns.
This will also include dosing information and estimates at the doses. Be de-
fault, rxode2 only includes estimates at the observations. (default FALSE). When
addDosing is NULL, only include EVID=0 on solve and exclude any model-times
or EVID=2. If addDosing is NA the classic rxode2 EVID events are returned.
When addDosing is TRUE add the event information in NONMEM-style format;
If subsetNonmem=FALSE rxode2 will also include extra event types (EVID) for
ending infusion and modeled times:

e EVID=-1 when the modeled rate infusions are turned off (matches rate=-1)

e EVID=-2 When the modeled duration infusions are turned off (matches
rate=-2)

* EVID=-10 When the specified rate infusions are turned off (matches rate>0)

* EVID=-20 When the specified dur infusions are turned off (matches dur>0)

e EVID=101,102,103, ... Modeled time where 101 is the first model time,
102 is the second etc.

When amounts/concentrations in one of the states are above this value, trim
them to be this value. By default Inf. Also trims to -stateTrim for large neg-
ative amounts/concentrations. If you want to trim between a range say c(9,
2000000) you may specify 2 values with a lower and upper range to make sure
all state values are in the reasonable range.

This is an internally used flag to update the rxode2 solved object (when supply-
ing an rxode2 solved object) as well as returning a new object. You probably
should not modify it’s FALSE default unless you are willing to have unexpected
results.

Estimate of Covariance matrix. When omega is a list, assume it is a block matrix
and convert it to a full matrix for simulations. When omega is NA and you are
using it with a rxode2 ui model, the between subject variability described by
the omega matrix are set to zero.

The degrees of freedom of a t-distribution for simulation. By default this is NULL
which is equivalent to Inf degrees, or to simulate from a normal distribution
instead of a t-distribution.

Indicates if the omega supplied is a Cholesky decomposed matrix instead of the
traditional symmetric matrix.

146

omegaSeparation

omegaXform

omegalower
omegalpper

nSub

thetaMat

thetaDf

thetalIsChol

nStud
dfSub

rxSolve

Omega separation strategy

Tells the type of separation strategy when simulating covariance with parameter
uncertainty with standard deviations modeled in the thetaMat matrix.

e "1kj" simulates the correlation matrix from the rLKJ1 matrix with the dis-
tribution parameter eta equal to the degrees of freedom nu by (nu-1)/2

* "separation” simulates from the identity inverse Wishart covariance ma-
trix with nu degrees of freedom. This is then converted to a covariance
matrix and augmented with the modeled standard deviations. While com-
putationally more complex than the "1kj" prior, it performs better when
the covariance matrix size is greater or equal to 10

e "auto” chooses "1kj" when the dimension of the matrix is less than 10
and "separation” when greater than equal to 10.

When taking omega values from the thetaMat simulations (using the separation
strategy for covariance simulation), how should the thetaMat values be turned
int standard deviation values:

* identity This is when standard deviation values are directly modeled by
the params and thetaMat matrix

e variance This is when the params and thetaMat simulates the variance
that are directly modeled by the thetaMat matrix

¢ log This is when the params and thetaMat simulates log(sd)

e nlmixrSqrt This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the x*2 modeled along the diagonal.
This only works with a diagonal matrix.

* nlmixrLog This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the exp(x*2) along the diagonal. This
only works with a diagonal matrix.

e nlmixrIdentity This is when the params and thetaMat simulates the in-
verse cholesky decomposed matrix. This only works with a diagonal ma-
trix.

Lower bounds for simulated ETAs (by default -Inf)
Upper bounds for simulated ETAs (by default Inf)

Number between subject variabilities (ETAs) simulated for every realization of
the parameters.

Named theta matrix.

The degrees of freedom of a t-distribution for simulation. By default this is NULL
which is equivalent to Inf degrees, or to simulate from a normal distribution
instead of a t-distribution.

Indicates if the theta supplied is a Cholesky decomposed matrix instead of the
traditional symmetric matrix.

Number virtual studies to characterize uncertainty in estimated parameters.

Degrees of freedom to sample the between subject variability matrix from the
inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.

rxSolve

dfObs

returnType

seed

nsim

minSS
maxSS
infSSstep

strictSS

istateReset

subsetNonmem

147

Degrees of freedom to sample the unexplained variability matrix from the in-
verse Wishart distribution (scaled) or scaled inverse chi squared distribution.

This tells what type of object is returned. The currently supported types are:

* "rxSolve" (default) will return a reactive data frame that can change easily
change different pieces of the solve and update the data frame. This is the
currently standard solving method in rxode2, is used for rxSolve(object,
...),solve(object,...),

e "data.frame"” — returns a plain, non-reactive data frame; Currently very
slightly faster than returnType="matrix"

* "matrix"” —returns a plain matrix with column names attached to the solved
object. This is what is used object$run as well as object$solve

* "data.table” —returns a data.table; The data. table is created by ref-
erence (ie setDt()), which should be fast.

e "tbl"” or "tibble" returns a tibble format.

an object specifying if and how the random number generator should be initial-
ized

represents the number of simulations. For rxode2, if you supply single subject
event tables (created with [eventTable()])

Minimum number of iterations for a steady-state dose
Maximum number of iterations for a steady-state dose

Step size for determining if a constant infusion has reached steady state. By
default this is large value, 12.

Boolean indicating if a strict steady-state is required. If a strict steady-state is
(TRUE) required then at least minSS doses are administered and the total number
of steady states doses will continue until maxSS is reached, or atol and rtol
for every compartment have been reached. However, if ODE solving problems
occur after the minSS has been reached the whole subject is considered an invalid
solve. If strictSSis FALSE then as long as minSS has been reached the last good
solve before ODE solving problems occur is considered the steady state, even
though either atol, rtol or maxSS have not been achieved.

When TRUE, reset the ISTATE variable to 1 for lsoda and liblsoda with doses,
like deSolve; When FALSE, do not reset the ISTATE variable with doses.

subset to NONMEM compatible EVIDs only. By default TRUE.

maxAtolRtolFactor

from

to

by

length.out

The maximum atol/rtol that FOCEi and other routines may adjust to. By
default 0.1

When there is no observations in the event table, start observations at this value.
By default this is zero.

When there is no observations in the event table, end observations at this value.
By default this is 24 + maximum dose time.

When there are no observations in the event table, this is the amount to increment
for the observations between from and to.

The number of observations to create if there isn’t any observations in the event
table. By default this is 200.

148

iCov

keep

indLinPhiTol

indLinPhiM

rxSolve

A data frame of individual non-time varying covariates to combine with the
events dataset by merge.

Columns to keep from either the input dataset or the iCov dataset. With the iCov
dataset, the column is kept once per line. For the input dataset, if any records
are added to the data LOCF (Last Observation Carried forward) imputation is
performed.

the requested accuracy tolerance on exponential matrix.

the maximum size for the Krylov basis

indLinMatExpType

This is them matrix exponential type that is use for rxode2. Currently the fol-
lowing are supported:
* Al-Mohy Uses the exponential matrix method of Al-Mohy Higham (2009)
» arma Use the exponential matrix from RcppArmadillo
* expokit Use the exponential matrix from Roger B. Sidje (1998)

indLinMatExpOrder

drop
idFactor

mxhnil

hmx i

warnIdSort

warnDrop
ssAtol
ssRtol
safeZero

sumType

prodType

an integer, the order of approximation to be used, for the A1-Mohy and expokit
values. The best value for this depends on machine precision (and slightly on
the matrix). We use 6 as a default.

Columns to drop from the output

This boolean indicates if original ID values should be maintained. This changes
the default sequentially ordered ID to a factor with the original ID values in the
original dataset. By default this is enabled.

maximum number of messages printed (per problem) warning that T+ H =T on
a step (H = step size). This must be positive to result in a non-default value. The
default value is O (or infinite).

inverse of the maximum absolute value of H to are used. hmxi = 0.0 is allowed

and corresponds to an infinite hmax1 (default). hminandhmximay be changed at any time, but wi

Warn if the ID is not present and rxode2 assumes the order of the parame-
ters/iCov are the same as the order of the parameters in the input dataset.

Warn if column(s) were supposed to be dropped, but were not present.

Steady state atol convergence factor. Can be a vector based on each state.
Steady state rtol convergence factor. Can be a vector based on each state.

Use safe zero divide and log routines. By default this is turned on but you may
turn it off if you wish.

Sum type to use for sum() in rxode2 code blocks.

pairwise uses the pairwise sum (fast, default)

fsum uses the PreciseSum package’s fsum function (most accurate)

kahan uses Kahan correction

neumaier uses Neumaier correction

c uses no correction: default/native summing

Product to use for prod() in rxode2 blocks

long double converts to long double, performs the multiplication and then
converts back.

double uses the standard double scale for multiplication.

rxSolve 149

sensType Sensitivity type for 1inCmt () model:
advan Use the direct advan solutions
autodiff Use the autodiff advan solutions
forward Use forward difference solutions
central Use central differences
linDiff This gives the linear difference amount for all the types of linear compartment
model parameters where sensitivities are not calculated. The named components
of this numeric vector are:
e "lag” Central compartment lag
e "f" Central compartment bioavailability
* "rate” Central compartment modeled rate
e "dur" Central compartment modeled duration
* "lag2" Depot compartment lag
* "f2" Depot compartment bioavailability
* "rate2” Depot compartment modeled rate
e "dur2" Depot compartment modeled duration

linDiffCentral This gives the which parameters use central differences for the linear compart-
ment model parameters. The are the same components as 1inDiff

resample A character vector of model variables to resample from the input dataset; This
sampling is done with replacement. When NULL or FALSE no resampling is done.
When TRUE resampling is done on all covariates in the input dataset

resampleID boolean representing if the resampling should be done on an individual basis
TRUE (ie. a whole patient is selected) or each covariate is resampled independent
of the subject identifier FALSE. When resampleID=TRUE correlations of param-
eters are retained, where as when resampleID=FALSE ignores patient covariate
correaltions. Hence the default is resampleID=TRUE.

maxwhile represents the maximum times a while loop is evaluated before exiting. By
default this is 100000
atolSens Sensitivity atol, can be different than atol with liblsoda. This allows a less accu-

rate solve for gradients (if desired)

rtolSens Sensitivity rtol, can be different than rtol with liblsoda. This allows a less accu-
rate solve for gradients (if desired)

ssAtolSens Sensitivity absolute tolerance (atol) for calculating if steady state has been achieved
for sensitivity compartments.

ssRtolSens Sensitivity relative tolerance (rtol) for calculating if steady state has been achieved
for sensitivity compartments.

simVariability determines if the variability is simulated. When NA (default) this is determined
by the solver.

nL1ikAlloc The number of log likelihood endpoints that are used in the model. This allows
independent log likelihood per endpoint in focei for nlmixr2. It likely shouldn’t
be set, though it won’t hurt anything if you do (just may take up more memory
for larger allocations).

150 rxSolve

useStdPow This uses C’s pow for exponentiation instead of R’s R_pow or R_pow_di. By
default this is FALSE

naTimeHandle Determines what time of handling happens when the time becomes NA: current
options are:

* ignore this ignores the NA time input and passes it through.

* warn (default) this will produce a warning at the end of the solve, but con-
tinues solving passing through the NA time

¢ error this will stop this solve if this is not a parallel solved ODE (otherwise
stopping can crash R)

addlKeepsCov This determines if the additional dosing items repeats the dose only (FALSE) or
keeps the covariates at the record of the dose (TRUE)

add1lDropSs When there are steady state doses with an addl specification the steady state
flag is dropped with repeated doses (when TRUE) or retained (when FALSE)

ssAtDoseTime Boolean that when TRUE back calculates the steady concentration at the actual
time of dose, otherwise when FALSE the doses are shifted
ss2cancelAllPending
When TRUE the SS=2 event type cancels all pending doses like SS=1. When
FALSE the pending doses not canceled with SS=2 (the infusions started before
SS=2 occurred are canceled, though).

envir is the environment to look for R user functions (defaults to parent environment)

a when using solve(), this is equivalent to the object argument. If you specify
object later in the argument list it overwrites this parameter.

b when using solve(), this is equivalent to the params argument. If you specify
params as a named argument, this overwrites the output

Details

The rest of the document focus on the different ODE solving methods, followed by the core solving
method’s options, rxode2 event handling options, rxode2’s numerical stability options, rxode2’s
output options, and finally internal rxode2 options or compatibility options.

Value

An “rxSolve” solve object that stores the solved value in a special data.frame or other type as
determined by returnType. By default this has as many rows as there are sampled time points
and as many columns as system variables (as defined by the ODEs and additional assignments in
the rxode2 model code). It also stores information about the call to allow dynamic updating of the
solved object.

nn

The operations for the object are similar to a data-frame, but expand the $ and [[""]] access op-
erators and assignment operators to resolve based on different parameter values, initial conditions,
solver parameters, or events (by updating the time variable).

You can call the eventTable() methods on the solved object to update the event table and resolve
the system of equations.

Author(s)
Matthew Fidler, Melissa Hallow and Wenping Wang

rxState 151

References
"New Scaling and Squaring Algorithm for the Matrix Exponential”, by Awad H. Al-Mohy and
Nicholas J. Higham, August 2009

Roger B. Sidje (1998). EXPOKIT: Software package for computing matrix exponentials. ACM -
Transactions on Mathematical Software 24(1), 130-156.

Hindmarsh, A. C. ODEPACK, A Systematized Collection of ODE Solvers. Scientific Computing, R.
S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pp. 55-64.

Petzold, L. R. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary
Differential Equations. Siam J. Sci. Stat. Comput. 4 (1983), pp. 136-148.

Hairer, E., Norsett, S. P., and Wanner, G. Solving ordinary differential equations I, nonstiff problems.
2nd edition, Springer Series in Computational Mathematics, Springer-Verlag (1993).

See Also

rxode2()

rxState State variables

Description

This returns the model’s compartments or states.

Usage
rxState(obj = NULL, state = NULL)

Arguments

obj rxode2 family of objects

state is a string indicating the state or compartment that you would like to lookup.
Value

If state is missing, return a character vector of all the states.

If state is a string, return the compartment number of the named state.

Author(s)
Matthew L.Fidler

See Also

rxode2()
Other Query model information: rxDfdy(), rxInits(), rxLhs(), rxModelVars(), rxParams()

152 rxSupportedFuns

rxSumProdModel Recast model in terms of sum/prod

Description

Recast model in terms of sum/prod

Usage
rxSumProdModel (model, expand = FALSE, sum = TRUE, prod = TRUE)

Arguments
model rxode2 model
expand Boolean indicating if the expression is expanded.
sum Use sum(...)
prod Use prod(...)
Value

model string with prod(.) and sum(.) for all these operations.

Author(s)
Matthew L. Fidler

rxSupportedFuns Get list of supported functions

Description

Get list of supported functions

Usage
rxSupportedFuns()

Value

list of supported functions in rxode2

Examples

rxSupportedFuns()

rxSuppressMsg 153

rxSuppressMsg Respect suppress messages

Description

This turns on the silent REprintf in C when suppressMessages() is turned on. This makes the
REprintf act like messages in R, they can be suppressed with suppressMessages()

Usage

rxSuppressMsg()

Value

Nothing

Author(s)

Matthew Fidler

Examples

rxSupressMsg() is called with rxode2()

Note the errors are output to the console

try(rxode2("d/dt(matt)=/3"), silent = TRUE)

When using suppressMessages, the output is suppressed
suppressMessages(try(rxode2(”"d/dt(matt)=/3"), silent = TRUE))

In rxode2, we use REprintf so that interrupted threads do not crash R
if there is a user interrupt. This isn't captured by R's messages, but

This interface allows the ‘suppressMessages()‘ to suppress the C printing
as well

ETE TS

H+

If you want to suppress messages from rxode2 in other packages, you can use
this function

154 rxSymlInvChol

rxSymInvChol Get Omega™-1 and derivatives

Description

Get Omega”-1 and derivatives

Usage

rxSymInvChol(
invObjOrMatrix,
theta = NULL,
type = "cholOmegalnv”,
thetaNumber = oL

Arguments

invObjoOrMatrix Object for inverse-type calculations. If this is a matrix, setup the object for
inversion rxSymInvCholCreate() with the default arguments and return a re-
active s3 object. Otherwise, use the inversion object to calculate the requested
derivative/inverse.

theta Thetas to be used for calculation. If missing (NULL), a special s3 class is created
and returned to access Omega*1 objects as needed and cache them based on the
theta that is used.

type The type of object. Currently the following types are supported:

* cholOmegalnv gives the Cholesky decomposition of the Omega Inverse
matrix.

* omegalnv gives the Omega Inverse matrix.

e d(omegalnv) gives the d(Omega”-1) withe respect to the theta parameter
specified in thetaNumber.

* d(D) gives the d(diagonal (Omega*-1)) with respect to the theta parame-
ter specified in the thetaNumber parameter

thetaNumber For types d(omegaInv) and d(D), the theta number that the derivative is taken
against. This must be positive from 1 to the number of thetas defining the Omega
matrix.
Value
Matrix based on parameters or environment with all the matrixes calculated in variables omega,
omegalnv, dOmega, dOmegalnv.
Author(s)
Matthew L. Fidler

rxSyncOptions 155

rxSyncOptions Sync options with rxode2 variables

Description

Accessing rxode2 options via getOption slows down solving. This allows the options to be synced
with variables.

Usage
rxSyncOptions(setDefaults = c("none”, "permissive”, "strict"))
Arguments
setDefaults This will setup rxode2’s default solving options with the following options:
* "none” leave the options alone
e "permissive” This is a permissive option set similar to R language speci-
fications.
e "strict” This is a strict option set similar to the original rxode2(). It re-
quires semicolons at the end of lines and equals for assignment
Value

nothing; called for side effects

Author(s)
Matthew L. Fidler

rxSyntaxFunctions A list and description of Rode supported syntax functions

Description

A list and description of Rode supported syntax functions

Usage

rxSyntaxFunctions

Format
A data frame with 3 columns and 98 rows

Function Reserved function Name
Description Description of function
Aliases Function Aliases

156 rxt

rxt Simulate student t variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www. johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage
rxt(df, n = 1L, ncores = 1L)

Arguments
df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.
n number of observations. If 1ength(n) > 1, the length is taken to be the number
required.
ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator.
rxnormV used to simulate with the vandercorput simulator, but since it didn’t
satisfy the normal properties it was changed to simple be an alias of rxnorm. It
is no longer supported in rxode2({}) blocks
Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

t-distribution random numbers

Examples

Use threefry engine
rxt(df = 3, n = 10) # with rxt you have to explicitly state n

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

rxTempDir 157

rxt(df = 3, n = 10, ncores = 2) # You can parallelize the simulation using openMP

rxt(4) ## The first argument is the df parameter

This example uses ‘rxt‘ directly in the model

rx <- function() {

model ({
a <- rxt(3)
1))

3
et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxTempDir Get the rxode?2 temporary directory

Description

Get the rxode2 temporary directory

Usage
rxTempDir ()

Value

rxode2 temporary directory.

rxTheme rxTheme is the ggplot2 theme for rxode2 plots

Description

rxTheme is the ggplot2 theme for rxode2 plots

Usage

rxTheme (
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22,

grid = TRUE

158 rxToSE
Arguments

base_size base font size, given in pts.

base_family base font family

base_line_size base size for line elements

base_rect_size base size for rect elements

grid a Boolean indicating if the grid is on (TRUE) or off (FALSE). This could also be a

character indicating x or y.

Value

ggplot2 theme used in rxode2

See Also

Other rxode?2 plotting: plot.rxSolve()

rxToSE rxode?2 to symengine environment

Description

rxode2 to symengine environment

Usage

rxToSE (
X,
envir = NULL,
progress = FALSE,
promoteLinSens = TRUE,
parent = parent.frame()

)
.rxToSE(x, envir = NULL, progress = FALSE)

rxFromSE (
X,

unknownDerivatives = c("forward”, "central”, "error"),

parent = parent.frame()

)

.rxFromSE (x)

rxTrans 159

Arguments
X expression
envir default is NULL; Environment to put symengine variables in.
progress shows progress bar if true.

promoteLinSens Promote solved linear compartment systems to sensitivity-based solutions.

parent is the parent environment to look for R-based user functions
unknownDerivatives
When handling derivatives from unknown functions, the translator will translate

into different types of numeric derivatives. The currently supported methods
are:

- “forward® for forward differences
- ‘central® for central differences
- ‘error® for throwing an error for unknown derivatives

Value

An rxode2 symengine environment

Author(s)
Matthew L. Fidler

rxTrans Translate the model to C code if needed

Description

This function translates the model to C code, if needed

Usage

rxTrans(
model,
modelPrefix = "",
md5 = HH,
modName = NULL,
modVars = FALSE,

)

Default S3 method:

rxTrans(
model,
modelPrefix = ""

’

md5 - nu’

160

modName
modVars

)...

rxTrans

NULL,
FALSE,

S3 method for class 'character'

rxTrans(
model,

modelPrefix =

md5 - uu’

nn
’

modName = NULL,
modVars = FALSE,

Arguments

model

modelPrefix

md5

modName

modVars

Value

This is the ODE model specification. It can be:

* a string containing the set of ordinary differential equations (ODE) and

other expressions defining the changes in the dynamic system.

¢ afile name where the ODE system equation is contained
An ODE expression enclosed in \{\}
(see also the filename argument). For details, see the sections “Details” and
rxode2 Syntax below.
Prefix of the model functions that will be compiled to make sure that multiple
rxode2 objects can coexist in the same R session.
Is the md5 of the model before parsing, and is used to embed the md5 into DLL,
and then provide for functions like rxModelVars().

a string to be used as the model name. This string is used for naming various
aspects of the computations, including generating C symbol names, dynamic
libraries, etc. Therefore, it is necessary that modName consists of simple ASCII
alphanumeric characters starting with a letter.

returns the model variables instead of the named vector of translated properties.

Ignored parameters.

a named vector of translated model properties including what type of jacobian is specified, the C
function prefixes, as well as the C functions names to be called through the compiled model.

Author(s)
Matthew L.Fidler

See Also

rxode2(), rxCompile().

rxUiDecompress 161

rxUiDecompress Compress/Decompress rxode2 ui

Description

Compress/Decompress rxode?2 ui

Usage
rxUiDecompress(ui)
rxUiCompress(ui)
Arguments
ui rxode2 ui object
Value

A compressed or decompressed rxui object

Author(s)
Matthew L. Fidler

Examples

one.cmt <- function() {
ini({
You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- log(c(@, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
the label("Label name"”) works with all models

eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
b))
model ({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd) | tmp
b))
3

162

f <- rxode2(one.cmt)
print(class(f))
print(is.environment(f))

f <= rxUiDecompress(f)
print(class(f))
print(is.environment(f))

f <= rxUiCompress(f)
print(class(f))
print(is.environment(f))

rxUiGet.cmtLines

rxUiGet.cmtLines S3 for getting information from Ul model

Description

S3 for getting information from UI model

Usage

S3 method for class
rxUiGet(x, ...)

S3 method for class
rxUiGet(x, ...)

S3 method for class
rxUiGet(x, ...)

S3 method for class
rxUiGet(x, ...)

S3 method for class
rxUiGet(x, ...)

S3 method for class
rxUiGet(x, ...)

S3 method for class
rxUiGet(x, ...)

S3 method for class
rxUiGet(x, ...)

rxUiGet(x, ...)

'cmtLines’

'dvidLine'

'paramsLine’

'simulationSigma’

'simulationModel’

'symengineModelNoPrune'

'symengineModelPrune’

'simulationIniModel’

rxUiGet.cmtLines 163

S3 method for class 'params'
rxUiGet(x, ...)

S3 method for class 'theta'
rxUiGet(x, ...)

S3 method for class 'lstChr'
rxUiGet(x, ...)

S3 method for class 'omega'
rxUiGet(x, ...)

S3 method for class 'funTxt'
rxUiGet(x, ...)

S3 method for class 'allCovs'
rxUiGet(x, ...)

S3 method for class 'muRefTable'
rxUiGet(x, ...)

S3 method for class 'multipleEndpoint'
rxUiGet(x, ...)

S3 method for class 'funPrint'
rxUiGet(x, ...)

S3 method for class 'fun'
rxUiGet(x, ...)

S3 method for class 'md5'
rxUiGet(x, ...)

S3 method for class 'ini'
rxUiGet(x, ...)

S3 method for class 'iniFun'
rxUiGet(x, ...)

S3 method for class 'modelFun'
rxUiGet(x, ...)

S3 method for class 'model'’
rxUiGet(x, ...)

S3 method for class 'modelDesc'
rxUiGet(x, ...)

164 rxUiGet.cmtLines

S3 method for class 'thetalLower'
rxUiGet(x, ...)

S3 method for class 'thetaUpper'
rxUiGet(x, ...)

S3 method for class 'lhsVar'
rxUiGet(x, ...)

S3 method for class 'varLhs'
rxUiGet(x, ...)

S3 method for class 'lhsEta'
rxUiGet(x, ...)

S3 method for class 'lhsTheta'
rxUiGet(x, ...)

S3 method for class 'lhsCov'
rxUiGet(x, ...)

S3 method for class 'etalLhs'
rxUiGet(x, ...)

S3 method for class 'thetalLhs'
rxUiGet(x, ...)

S3 method for class 'covlLhs'
rxUiGet(x, ...)

Default S3 method:

rxUiGet(x, ...)
Arguments
X list of (Ulenvironment, exact). Ul environment is the parsed function for rxode2.
exact is a boolean that says if an exact match is required.
Other arguments
Value

value that was requested from the UI object

Author(s)

Matthew Fidler

rxunif 165

rxunif Simulate uniform variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www. johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxunif(min = @, max = 1, n = 1L, ncores = 1L)

Arguments
min, max lower and upper limits of the distribution. Must be finite.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator.
rxnormV used to simulate with the vandercorput simulator, but since it didn’t
satisfy the normal properties it was changed to simple be an alias of rxnorm. It
is no longer supported in rxode2 ({}) blocks
Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

uniform random numbers

Examples

Use threefry engine

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

166 rxUnloadAll

rxunif(min = @, max = 4, n = 10) # with rxunif you have to explicitly state n
rxunif(min =@, max =4, n =10, ncores = 2) # You can parallelize the simulation using openMP

rxunif()

This example uses ‘rxunif® directly in the model

rx <- function() {
model ({
a <- rxunif(e@, 3)
D)
}

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

rxUnloadAll Unloads all rxode2 compiled DLLs

Description

Unloads all rxode2 compiled DLLs

Usage

rxUnloadAll ()

Value

List of rxode?2 dlls still loaded

boolean of if all rxode2 dlls have been unloaded

Examples

print(rxUnloadAll())

rxUse 167

rxUse Use model object in your package

Description

Use model object in your package

Usage

rxUse(obj, overwrite = TRUE, compress = "bzip2"”, internal = FALSE)

Arguments
obj model to save.
overwrite By default, use_data() will not overwrite existing files. If you really want to
do so, set this to TRUE.
compress Choose the type of compression used by save(). Should be one of "gzip",
"bzip2", or "xz".
internal If this is run internally. By default this is FALSE
Value

Nothing; This is used for its side effects and shouldn’t be called by a user

rxValidate Validate rxode2 This allows easy validation/qualification of nimixr by
running the testing suite on your system.

Description
Validate rxode2 This allows easy validation/qualification of nlmixr by running the testing suite on
your system.

Usage

rxValidate(type = NULL, skipOnCran = TRUE)

rxTest(type = NULL, skipOnCran = TRUE)

Arguments

type Type of test or filter of test type, When this is an expression, evaluate the con-
tents, respecting skipOnCran

skipOnCran when TRUE skip the test on CRAN.

168 rxweibull

Value

nothing

Author(s)
Matthew L. Fidler

rxweibull Simulate Weibull variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https://
www. johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since
the sitmo threefry, this currently generates one random deviate from the uniform distribution
to seed the engine threefry and then run the code.

Usage

rxweibull (shape, scale = 1, n = 1L, ncores = 1L)

Arguments
shape, scale shape and scale parameters, the latter defaulting to 1.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator.
rxnormV used to simulate with the vandercorput simulator, but since it didn’t
satisfy the normal properties it was changed to simple be an alias of rxnorm. It
is no longer supported in rxode2({3}) blocks
Details

Therefore, a simple call to the random number generated followed by a second call to random
number generated may have identical seeds. As the number of random number generator calls are
increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the rxode2 environment once
(therefore one seed or series of seeds for the whole simulation), pre-generate all random variables
used for the simulation, or seed the rxode2 engine with rxSetSeed()

Internally each ID is seeded with a unique number so that the results do not depend on the number
of cores used.

Value

Weibull random deviates

https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/
https://www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/

stat_amt 169

Examples

Use threefry engine

with rxweibull you have to explicitly state n
rxweibull (shape = 1, scale = 4, n = 10)

You can parallelize the simulation using openMP
rxweibull (shape = 1, scale = 4, n = 10, ncores = 2)

rxweibull(3)

This example uses ‘rxweibull® directly in the model

rx <- function() {
model ({
a <- rxweibull(1, 3)
»
3

et <- et(1, id = 1:2)

s <- rxSolve(rx, et)

stat_amt Dosing/Amt geom/stat

Description

This is a dosing geom that shows the vertical lines where a dose occurs

Usage
stat_amt(
mapping = NULL,
data = NULL,
position = "identity"”,

show.legend = NA,
inherit.aes = TRUE,

geom_amt (
mapping = NULL,
data = NULL,

170

position ="'

show. legend
inherit.aes

Arguments

mapping

data

position

show. legend

inherit.aes

Details

stat_amt

"identity”,

= NA,
= TRUE,

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Other arguments passed on to layer (). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red” or size = 3. They may also
be parameters to the paired geom/stat.

Requires the following aesthetics:

* x representing the x values, usually time

* amt representing the dosing values; They are missing or zero when no dose is given

Value

This returns a stat_amt in context of a ggplot2 plot

stat_amt

Examples

library(rxode2)
library(units)

Model from RxODE tutorial
mod1 <- function() {
ini({
KA <- 2.94E-01
CL <- 1.86E+01
V2 <- 4.02E+01
Q <- 1.05E+01
V3 <- 2.97E+02
Kin <- 1
Kout <- 1
EC50 <- 200
1))
model ({
C2 <- centr/V2
C3 <- peri/V3
d/dt(depot) <- -KA*depot
d/dt(centr) <- KA*depot - CL*C2 - Q*C2 + Q*C3
d/dt(peri) - Q*C2 - Q*C3
d/dt(eff) <- Kin - Kout*(1-C2/(EC50+C2))*eff
H
3

AN

These are making the more complex regimens of the rxode2 tutorial
bid for 5 days
bid <- et(timeUnits="hr") %>%
et(amt=10000,ii=12,until=set_units(5, "days"))
gd for 5 days
qd <- et(timeUnits="hr") %>%
et (amt=20000,ii=24,until=set_units(5, "days"))
bid for 5 days followed by qd for 5 days
et <- seq(bid,qd) %>% et(seq(@,11%24,length.out=100))

bidQd <- rxSolve(mod1, et, addDosing=TRUE)

by default dotted and under-stated
plot(bidQd, C2) + geom_amt(aes(amt=amt))

of course you can make it a bit more visible

plot(bidQd, C2) + geom_amt(aes(amt=amt), col="red"”, lty=1, linewidth=1.2)

171

172

stat_cens

stat_cens

Censoring geom/stat

Description

This is a censoring geom that shows the left or right censoring specified in the nlmixr input data-set

or fit
Usage

stat_cens(
mapping = NULL,
data = NULL,
position = "identity"”,
show.legend = NA,
inherit.aes = TRUE,
width = 0.01,

)

geom_cens (
mapping = NULL,
data = NULL,
position = "identity"”,

show.legend = NA,
inherit.aes = TRUE,
width = 0.01,

Arguments

mapping

data

Set of aesthetic mappings created by aes(). If specified and inherit.aes =

TRUE (the default), it is combined with the default mapping at the top level of

the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the

call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be

created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function

can be created from a formula (e.g. ~ head(.x, 10)).

summary.rxode2

position

show. legend

inherit.aes

width

Details

173

Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

represents the width (in \ censoring box

Other arguments passed on to layer (). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red” or size = 3. They may also
be parameters to the paired geom/stat.

Requires the following aesthetics:

* x Represents the independent variable, often the time scale

* y represents the dependent variable

* CENS for the censoring information; (-1 right censored, @ no censoring or 1 left censoring)

e LIMIT which represents the corresponding limit ()

Will add boxes representing the areas of the fit that were censored.

Value

This returns a ggplot2 stat

summary . rxode?2

Print expanded information about the rxode?2 object.

Description

This prints the expanded information about the rxode2 object.

Usage

S3 method for class 'rxode2'

summary (object,

Arguments

object

)

rxode2 object

Ignored parameters

174

Value

object is returned

uppergamma

Author(s)

Matthew L.Fidler

update.rxui Update for rxUi

Description

Update for rxUi
Usage

S3 method for class 'rxUi'

update(object, ..., envir = parent.frame())
Arguments

object rxode2 UI object

Lines to update

envir Environment for evaluating ini() style calls

Value

a new rxode2 updated UI object

uppergamma uppergamma: upper incomplete gamma function

Description

This is the tgamma from the boost library

Usage

uppergamma(a, z)

Arguments

a The numeric ’a’ parameter in the upper incomplete gamma

z The numeric ’z’ parameter in the upper incomplete gamma

zeroRe

Details

The uppergamma function is given by:

uppergammal(a,z) = [t*7 e~ dt

Value

uppergamma results

Author(s)
Matthew L. Fidler

Examples

uppergamma(1, 3)
uppergamma(1:3, 3)

uppergamma(1, 1:3)

175

zeroRe Set random effects and residual error to zero

Description

Set random effects and residual error to zero

Usage

zeroRe(object, which = c("omega”, "sigma"), fix = TRUE)

Arguments

object The model to modify

which The types of parameters to set to zero

fix Should the parameters be fixed to the zero value?
Value

The object with some parameters set to zero

Author(s)

Bill Denney

176 zeroRe

See Also

Other Initial conditions: ini.rxUi()

Examples

one.compartment <- function() {

ini({
tka <- log(1.57); label("Ka")
tcl <- log(2.72); label("Cl")
tv <- log(31.5); label("V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

»

model ({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
d/dt(depot) = -ka * depot
d/dt(center) = ka * depot - cl / v * center
cp = center / v
cp ~ add(add.sd)

1))

3

zeroRe(one.compartment)

Index

+ Initial conditions
ini.rxUi, 28
zeroRe, 175

* Internal
.matchesLangTemplate, 7
odeMethodToInt, 58
plot.rxSolve, 59

* Nonlinear regression
rxode2, 93

+ ODE models
rxode2, 93

x Ordinary differential equations
rxode2, 93

* PK/PD
genShinyApp.template, 26

* Pharmacodynamics (PD)
rxode2, 93

+x Pharmacokinetics (PK)
rxode2, 93

* Query model information
rxDfdy, 74
rxLhs, 88
rxParams, 116
rxState, 151

+ datasets
rxReservedKeywords, 126
rxResidualError, 126
rxSyntaxFunctions, 155

+* models
rxode2, 93

+ nonlinear
genShinyApp.template, 26
rxode2, 93

* pharmacometrics
genShinyApp. template, 26

* rxode2 plotting
plot.rxSolve, 59
rxTheme, 157

+ simulation

177

genShinyApp.template, 26
.CO, 71
.Call(), 71
.copyUi, 5
.handleSingleErrTypeNormOrTFoceiBase,
6
.matchesLangTemplate, 7
.modelHandleModellines, 7
.quoteCallInfolLines, 8
.rxFromSE (rxToSE), 158
.rxLinCmtGen, 9
.rxRename (rxRename), 124
.rxToSE (rxToSE), 158
.rxWithOptions, 9
.rxWithwd, 10

add.dosing(), 111

add.sampling(), 111

aes(), 170,172

as.ini, 11

as.model, 13

as.rxUi, 15

assertRxUi, 16

assertRxUiEstimatedResiduals
(assertRxUi), 16

assertRxUiMixedOnly (assertRxUi), 16

assertRxUiMuRefOnly (assertRxUi), 16

assertRxUiNormal (assertRxUi), 16

assertRxUiPopulationOnly (assertRxUi),
16

assertRxUiPrediction (assertRxUi), 16

assertRxUiRandomOnIdOnly (assertRxUi),
16

assertRxUiSingleEndpoint (assertRxUi),
16

assertRxUiTransformNormal (assertRxUi),
16

binomProbs, 18
borders(), 170, 173

178

erf, 21
et(), 111

eventTable(), 27,111, 142, 150

expit (logit), 48
fortify(), 170, 172

gammap, 21

gammapDer, 22
gammaplInv, 23

gammapInva (gammapInv), 23
gammagq, 24

gammaqglnv, 25

gammaglnva (gammaqlnv), 25
genShinyApp.template, 26
geom_amt (stat_amt), 169
geom_cens (stat_cens), 172
getRxThreads, 27
ggplot(), 170, 172

ini (ini.rxUi), 28
ini.rxUi, 28, 176
ini<-, 31

layer(), 170,173
11likBeta, 31
11ikBinom, 32
11likCauchy, 34
11ikChisq, 35
11ikExp, 36
11ikF, 37
11ikGamma, 38
11ikGeom, 39
11ikNbinom, 40
11ikNbinomMu, 42
11ikNorm, 43
11ikPois, 44
11ikT, 45
11ikuUnif, 46
11ikWeibull, 47
logit, 48
logitNormInfo (logit), 48
lowergamma, 50

meanProbs, 51

model (model.function), 53
model . function, 53
model<-, 55
modelExtract, 55

INDEX

odeMethodToInt, 58

plot.rxSolve, 59, 158
plot.rxSolveConfint1 (plot.rxSolve), 59
plot.rxSolveConfint2 (plot.rxSolve), 59
predict.function (rxSolve), 137
predict.rxEt (rxSolve), 137
predict.rxode2 (rxSolve), 137
predict.rxParams (rxSolve), 137
predict.rxSolve (rxSolve), 137
predict.rxUi (rxSolve), 137

probit, 59

probitInv (probit), 59

probitNormInfo (logit), 48

rename. function (rxRename), 124
rename.rxUi (rxRename), 124
rxAllowUnload, 60
rxAppendModel, 61
rxAssignControlValue, 62
rxAssignPtr, 63
rxbeta, 63

rxbinom, 64

rxcauchy, 66

rxchisq, 67

rxClean, 68

rxCompile, 69
rxCompile(), 160
rxControl (rxSolve), 137
rxControlUpdateSens, 71
rxCores (getRxThreads), 27
rxCreateCache, 72

rxD, 72

rxDelete, 73
rxDfdy, 74, 88, 118, 151
rxexp, 74

rxf, 76

rxFromSE (rxToSE), 158
rxFun, 77

rxgamma, 80

rxgeom, 81
rxGetControl, 83
rxGetlLin, 83
rxGetrxode?2, 84
rxHtml, 85

rxIndLin_, 86
rxIndLinState, 85
rxIndLinStrategy, 86
rxInits, 74,88, 118, 151

INDEX

rxInv, 87

rxIsCurrent, 88
rxLhs, 74, 88, 118, 151
rxLock, 89
rxModelVars, 74, 88, 118, 151
rxModelVars(), 160
rxnbinom, 89

rxnbinomMu (rxnbinom), 89
rxNorm, 91

rxnorm (rxnormV), 92
rxnormV, 92

RxODE (rxode2), 93

rxode (rxode2), 93
rxode2, 88, 93
rxode2(), 26, 27,71, 151, 160
rxode2<-, 112

RXODE<- (rxode2<-), 112
rxode<- (rxode2<-), 112
rxOptExpr, 114

rxord, 115

rxParam (rxParams), 116
rxParams, 74, 88, 116, 151
rxPkg, 118

rxpois, 119

rxPp, 120
rxPreferredDistributionName, 122
rxProgress, 123
rxProgressAbort (rxProgress), 123
rxProgressStop (rxProgress), 123
rxRemoveControl, 124
rxRename, 124
rxReservedKeywords, 126
rxResidualError, 126
rxRmFun (rxFun), 77

rxs, 127

rxSetControl, 128
rxSetCovariateNamesForPiping, 128
rxSetPipingAuto, 130
rxSetProd, 131
rxSetProgressBar, 131
rxSetSum, 132

rxShiny, 132
rxSimThetaOmega, 133
rxSolve, 137

rxSolve(), 26
rxState, 74, 88, 118, 151
rxSumProdModel, 152
rxSupportedFuns, 152

rxSuppressMsg, 153
rxSymInvChol, 154
rxSymInvCholCreate(), 154
rxSyncOptions, 155
rxSyntaxFunctions, 155
rxt, 156

rxTempDir, 157

rxTest (rxValidate), 167
rxTheme, 59, 157

rxTick (rxProgress), 123
rxToSE, 158

rxTrans, 159

rxTrans(), 70
rxUiCompress (rxUiDecompress), 161
rxUiDecompress, 161
rxUiGet (rxUiGet.cmtLines), 162
rxUiGet.cmtLines, 162
rxunif, 165
rxUnloadAll, 166

rxUnlock (rxLock), 89
rxUse, 167

rxValidate, 167
rxweibull, 168

save(), 167

setRxThreads (getRxThreads), 27
setRxThreads(), 143
simulate.rxode2 (rxSolve), 137
simulate.rxParams (rxSolve), 137
simulate.rxSolve (rxSolve), 137
solve.function (rxSolve), 137
solve.rxEt (rxSolve), 137
solve.rxode2 (rxSolve), 137
solve.rxParams (rxSolve), 137
solve.rxSolve (rxSolve), 137
solve.rxUi (rxSolve), 137
stat_amt, 169

stat_cens, 172
summary.rxode2, 173

update.rxSolve (rxSolve), 137
update.rxUi, 174
uppergamma, 174
use_description(), 119

vname, 17

write.template.server
(genShinyApp.template), 26

179

180

write.template.ui
(genShinyApp.template), 26

write.template.ui(), 26

zeroRe, 30, 175

INDEX

	.copyUi
	.handleSingleErrTypeNormOrTFoceiBase
	.matchesLangTemplate
	.modelHandleModelLines
	.quoteCallInfoLines
	.rxLinCmtGen
	.rxWithOptions
	.rxWithWd
	as.ini
	as.model
	as.rxUi
	assertRxUi
	binomProbs
	erf
	gammap
	gammapDer
	gammapInv
	gammaq
	gammaqInv
	genShinyApp.template
	getRxThreads
	ini.rxUi
	ini<-
	llikBeta
	llikBinom
	llikCauchy
	llikChisq
	llikExp
	llikF
	llikGamma
	llikGeom
	llikNbinom
	llikNbinomMu
	llikNorm
	llikPois
	llikT
	llikUnif
	llikWeibull
	logit
	lowergamma
	meanProbs
	model.function
	model<-
	modelExtract
	odeMethodToInt
	plot.rxSolve
	probit
	rxAllowUnload
	rxAppendModel
	rxAssignControlValue
	rxAssignPtr
	rxbeta
	rxbinom
	rxcauchy
	rxchisq
	rxClean
	rxCompile
	rxControlUpdateSens
	rxCreateCache
	rxD
	rxDelete
	rxDfdy
	rxexp
	rxf
	rxFun
	rxgamma
	rxgeom
	rxGetControl
	rxGetLin
	rxGetrxode2
	rxHtml
	rxIndLinState
	rxIndLinStrategy
	rxIndLin_
	rxInv
	rxIsCurrent
	rxLhs
	rxLock
	rxnbinom
	rxNorm
	rxnormV
	rxode2
	rxode2<-
	rxOptExpr
	rxord
	rxParams
	rxPkg
	rxpois
	rxPp
	rxPreferredDistributionName
	rxProgress
	rxRemoveControl
	rxRename
	rxReservedKeywords
	rxResidualError
	rxS
	rxSetControl
	rxSetCovariateNamesForPiping
	rxSetPipingAuto
	rxSetProd
	rxSetProgressBar
	rxSetSum
	rxShiny
	rxSimThetaOmega
	rxSolve
	rxState
	rxSumProdModel
	rxSupportedFuns
	rxSuppressMsg
	rxSymInvChol
	rxSyncOptions
	rxSyntaxFunctions
	rxt
	rxTempDir
	rxTheme
	rxToSE
	rxTrans
	rxUiDecompress
	rxUiGet.cmtLines
	rxunif
	rxUnloadAll
	rxUse
	rxValidate
	rxweibull
	stat_amt
	stat_cens
	summary.rxode2
	update.rxUi
	uppergamma
	zeroRe
	Index

