Package ‘twitteR’

October 14, 2022
Title R Based Twitter Client
Description Provides an interface to the Twitter web API.
Version 1.1.9
Author Jeff Gentry <geoffjentry@gmail.com>
Maintainer Jeff Gentry <geoffjentry@gmail.com>
Depends R (>=2.12.0)
Imports methods, bit64, rjson, DBI (>= 0.3.1), httr (>= 1.0.0)
Suggests RSQLite, RMySQL
License Artistic-2.0

LazyData yes

URL http://1lists.hexdump.org/listinfo.cgi/twitter-users-hexdump.org

Collate allGenerics.R base.R account.R statuses.R users.R trends.R
s4methods.R convert.R dm.R oauth.R comm.R followers.R search.R
db.R df_columns.R db_connections.R db_utils.R db_search.R
toys.R utils.R zzz.R

NeedsCompilation no
Repository CRAN
Date/Publication 2015-07-29 00:27:59

R topics documented:

decode_short_url e
directMessage-class e e e
dmGet L e e e e
favorites e e e
friendships. e
getCurRateLimitInfo
getTrends L e e
getUSEr e e e e e e e
get_latest_tweet_id L
IMPOrt_StAtUSES« v v v vt e e e e e e e e e e

http://lists.hexdump.org/listinfo.cgi/twitter-users-hexdump.org

2 decode_short_url
load_tweets_db e e 12
registerTwitterOAuth 13
register_db_backend 14
TEIWEELS v o e e e e e e e e e e e e 15
searchTwitter e e 16
search_twitter_and_Store e e e 18
setup_twitter_oauth 19
showStatus e e e 20
Status-class e e e e 21
SIIP_TELWEELS v v v e e e e e e e e 22
taskStatus e e 23
mMELNES e e e e 24
twListToDF e 25
updateStatus e e e e 26
User-class e e 27
use_oauth_token e 29

Index 30

decode_short_url A function to decode shortened URLs

Description

Will expand a URL that has been processed by a link shortener (e.g. bit.ly). Provided as a conve-
nience function to users who may which to perform this operation.

Usage

decode_short_url(url, ...)
Arguments
url A character string, the URL to decode
Optional arguments to pass along to RCurl
Details
Uses the longapi.org API
Value
A character string containing either the original URL (if not shortened) or the full URL (if short-
ened)
Author(s)

Neil Jang

longapi.org

directMessage-class 3

References

longapi.org

Examples

Not run:
decode_short_url("http://bit.ly/23226se656")

End(Not run)

directMessage-class Class "directMessage": A class to represent Twitter Direct Messages

Description

Provides a model representing direct messages (DMs) from Twitter

Details

The directMessage class is implemented as a reference class. As there should be no backwards
compatibility issues, there are no S4 methods provided as with the user and status classes. An
instance of a generator for this class is provided as a convenience to the user as it is configured
to handle most standard cases. To access this generator, use the object dmFactory. Accessor
set & get methods are provided for every field using reference class $accessors() methodology
(see setRefClass for more details). As an example, the sender field could be accessed using
object$getSender() and object$setSender().

The constructor of this object assumes that the user is passing in a JSON encoded Twitter Direct
Message. It is also possible to directly pass in the arguments.

Fields
text: Text of the DM

recipient: A user object representing the recipient of the message
recipientSN: Screen name of the recipient

recipientID: ID number of the recipient

sender: A user object representing the sender of the message
senderSN: Screen name of the sender

senderID: ID number of the sender

created: When the messages was created

Methods

destroy: Deletes this DM from Twitter. A wrapper around dmDestroy

toDataFrame: Converts this into a one row data.frame, with each field representing a column.
This can also be accomplished by the S4 style as.data.frame(objectName).

longapi.org

4 dmGet

Author(s)

Jeff Gentry

See Also

dmGet, dmSend, dmDestroy, setRefClass

Examples

Not run:
dm <- dmFactory$new(text='foo', recipientSN='blah')
dm$getText ()

assume 'json' is the return from a Twitter call
dm <- dmFactory$new(json)

dm$getSenderID()

End(Not run)

dmGet Functions to manipulate Twitter direct messages

Description

These functions allow you to interact with, send, and delete direct messages (DMs) in Twitter.

Usage
dmGet (n=25, sinceID=NULL, maxID=NULL, ...)
dmSent(n=25, sinceID=NULL, maxID=NULL, ...)
dmDestroy(dm, ...)
dmSend(text, user, ...)
Arguments
text The text of a message to send
user The user to send a message to, either character or an user object.
dm The message to delete, an object of class directMessage
n The maximum number of direct messages to return
sincelD If not NULL, an ID representing the earliest boundary
maxID If not NULL, an ID representing the newest ID you wish to retrieve

Further arguments to pass along the communication chain

favorites 5

Value

These functions will not work without OAuth authentication

The dmGet and dmSent functions will return a list of directMessage objects. The former will
retrieve DMs sent to the user while the latter retrieves messages sent from the user.

The dmDestroy function takes a directMessage object (perhaps from either dmGet or dmSent) and
will delete it from the Twitter server.

The dmSend function will send a message to another Twitter user.

Author(s)
Jeff Gentry

See Also

directMessage, registerTwitterOAuth

Examples

Not run:
dms <- dmGet()
dms
delete the first one
dms[[1]]$destroy()
dmDestroy(dms[[2]])
send a DM
dmSend('Testing out twitteR!', 'twitter')

End(Not run)

favorites A function to get favorite tweets

Description

Returns the n most recently favorited tweets from the specified user.

Usage
favorites(user, n = 20, max_id = NULL, since_id = NULL, ...)
Arguments
user The Twitter user to detail, can be character or an user object.
n Number of tweets to retrieve, up to a maximum of 200
max_id Maximum ID to search for
since_id Minimum ID to search for

Optional arguments to pass along to RCurl

6 friendships

Value

A list of link{status} objects corresponding to the n most recent tweets

Author(s)

Jeff Gentry

References

https://dev.twitter.com/rest/reference/get/favorites/list

See Also

getUser, status

Examples

Not run:
fav = favorites("barackobama”, n=100)

End(Not run)

friendships A function to detail relations between yourself & other users

Description

This function will accept a list of other Twitter users and will detail if they follow you and/or you
follow them.

Usage

friendships(screen_names = character(), user_ids = character(), ...)

Arguments

screen_names A vector of one or more Twitter screen names
user_ids A vector of one or more Twitter user id values

Any other arguments to pass to RCurl

Details

The combined number of screen names and user ids may not exceed 100. Any non-existent users
will be dropped from the output

https://dev.twitter.com/rest/reference/get/favorites/list

getCurRateLimitInfo 7

Value

A data.frame, one row for each user requested with columns name, screen_name, id, following
and followed_by. The latter two columns will be TRUE or FALSE depending on that user’s relations
with your account.

Author(s)
Jeff Gentry

References

https://dev.twitter.com/docs/api/1.1/get/friendships/lookup

See Also

registerTwitterOAuth

Examples

Not run:
friendships()

End(Not run)

getCurRateLimitInfo A function to retrieve current rate limit information

Description

Will retrieve the current rate limit information for the authenticated user, displayed as a data.frame
displaying specifc information for every Twitter resource

Usage
getCurRateLimitInfo(resources=resource_families, ...)
Arguments
resources A character vector of specific resources to get information for
Optional arguments to pass to cURL
Details

By default, all known resource families will be polled. These families are contained in the object
resource_families. If you would like to filter this down you may tweak the resources argument.

The full list of allowed values in resources is as follows: lists, application, friendships,
blocks, geo, users, followers, statuses, help, friends, direct_messages, account, favorites,
saved_searches, search, trends.

8 getTrends

Value

A four column data.frame with columns resource, 1imit, remaining and reset. These detail the
specific resource name, the rate limit for that block, the number of calls remaining and the time the
rate limit will be reset in UTC time.

Author(s)
Jeff Gentry

Examples

Not run:
zz <- getCurRateLimitInfo(c("lists”, "users"”))

End(Not run)

getTrends Functions to view Twitter trends

Description

These functions will allow you to interact with the trend portion of the Twitter API

Usage
availableTrendLocations(...)
closestTrendLocations(lat, long, ...)
getTrends(woeid, exclude=NULL, ...)
Arguments
woeid A numerical identification code describing a location, a Yahoo! Where On Earth
ID
lat A numerical latitude value, between -180 and 180 inclusive. West is negative,

East is positive

long A numerical longitude value, between -180 and 180 inclusive. South is negative,
North is positive

exclude If set to hashtags, will exclude hashtags
Additional arguments to be passed to RCurl

Details

The availableTrendLocations and closestTrendLocations functions will return a data.frame
with three columns - name, country and woeid. The closestTrendLocations function will return
the locations closest to the specified latitude and longitude.

The getTrends function takes a specified woeid and returns the trending topics associated with that
woeid. It returns a data.frame with the columns being name, url, promoted_content, query and
woeid - one row per trend.

getUser 9

Value

A data.frame with the columns specified in Details above

Author(s)

Jeff Gentry

Examples

Not run:
woeid = availableTrendLocations[1, "woeid"]
t1 <- getTrends(woeid)

End(Not run)

getUser Functions to manage Twitter users

Description

These functions allow you interact with information about a Twitter user - retrieving their base
information, list of friends, list of followers, and an up to date timeline.

Usage
getUser(user, ...)
lookupUsers(users, includeNA=FALSE, ...)
Arguments
user The Twitter user to detail, can be character or an user object.
users A vector of either user IDs or screen names or a mix of both
includeNA If TRUE will leave an NA element in the return list for users that don’t exist
Optional arguments to be passed to GET
Details

These functions will only return fully formed objects if the authenticated user is allowed to see the
requested user. If that person has a private account and has not allowed you to see them, you will
not be able to extract that information.

The lookupUsers function should be used in cases where there are multiple lookups going to take
place, to reduce the API call load. This function requires OAuth authentication.

10 get_latest_tweet_id

Value

The getUser function returns an object of class user.

The lookupUsers function will return a list of user objects, sorted in the order of the users ar-
gument, with names being the particular element of users that it matches to. If the includeNA
argument is set to FALSE (default), any non-existing users will be dropped from the list.

Author(s)
Jeff Gentry

See Also

mentions

Examples

Not run:
tuser <- getUser('geoffjentry')
users <- lookupUsers(c('geoffjentry', 'whitehouse'))

End(Not run)

get_latest_tweet_id A function to retrieve the most recent tweet ID from a database

Description

Given a registered database backend which contains a table of tweets, will return the ID of the most
recent tweet stored in that table

Usage

get_latest_tweet_id(table_name = "tweets")

Arguments

table_name The name of the table in the database containing tweets

Details

A wrapper around a select max(id) on the table_name

Value

The ID of the most recent tweet in the table, or a stop if the table is empty

Author(s)
Jeff Gentry

import_statuses 11

See Also

register_db_backend

Examples

Not run:
register_sqlite_backend("sqlit_file")
get_latest_tweet_id("rstats_tweets"”)

End(Not run)

import_statuses Functions to import twitteR objects from various sources

Description

Functions designed to import data into twitteR objects from a variety of data sources. Currently
only JSON is supported, and this entire branch of functionality should be considered experimental
& under development.

Usage

import_statuses(raw_data, conversion_func = json_to_statuses)
import_trends(raw_data, conversion_func = json_to_trends)
import_users(raw_data, conversion_func = json_to_users)
import_obj(raw_data, conversion_func, ...)
json_to_users(raw_data)

json_to_statuses(raw_data)

json_to_trends(raw_data)

Arguments

raw_data Data to be be parsed via the prescribed function
conversion_func
The function to convert raw_data into the specified twitteR object

Arguments to pass along to conversion_func

Value

A list of twitteR objects of the appropriate type, e.g. status, user, etc

Author(s)
Jeff Gentry

See Also

status, user

12 load_tweets_db

Examples

Not run:
status_list = import_statuses(list_of_status_json)

End(Not run)

load_tweets_db Functions to persist/load twitteR data to a database

Description

These functions allow a user to store twitteR based data to a database backend as well as retrieving
previously stored data

Usage

store_tweets_db(tweets, table_name="tweets")
store_users_db(users, table_name="users")
load_users_db(as.data.frame = FALSE, table_name = "users")
load_tweets_db(as.data.frame = FALSE, table_name = "tweets")

Arguments
tweets A list of status objects to persist to the database
users A list of user objects to persist to the database

as.data.frame if TRUE, data will be returned as a data.frame instead of twitteR objects

table_name The database table to use for storing and loading

Value

store_tweets_db and store_users_db return TRUE of FALSE based on their success or not. The
loading functions return either a data. frame of the data (representing the underlying table) or a list
of the appropriate twitteR objects.

Author(s)

Jeff Gentry

See Also

register_db_backend, register_sqlite_backend, register_mysqgl_backend

registerTwitterOAuth 13

Examples

Not run:
register_sqlite_backend("/path/to/sqlite/file")
tweets = searchTwitter("#scala")
store_tweets_db(tweets)
from_db = load_tweets_db()

End(Not run)

registerTwitterOAuth Register OAuth credentials to twitter R session

Description

These functions are deprecated

Usage
getTwitterOAuth(consumer_key, consumer_secret)
registerTwitterOAuth(oauth)

Arguments

consumer_key The consumer key supplied by Twitter
consumer_secret

The consumer secret supplied by Twitter
oauth An object of class OAuth

Details

These functions are deprecated, see setup_twitter_oauth

Value

TRUE on success, otherwise an error will be thrown

Author(s)
Jeff Gentry

See Also

setup_twitter_oauth

Examples

Not run:
fakeExample = 5

End(Not run)

14 register_db_backend

register_db_backend Functions to setup a database backend for twitteR

Description

twitteR can have a database backend registered from which to store and load tweet and user data.
These functions provide mechanisms for setting up the connection within twitteR

Usage

register_db_backend(db_handle)
register_sqlite_backend(sqlite_file, ...)
register_mysqgl_backend(db_name, host, user, password, ...)

Arguments

db_handle A DBI connection
sqlite_file File path for a SQLite file

db_name Name of the database to connect to

host Hostname the database is on

user username to connect to the database with
password password to connect to the database with

extra arguments to pass to dbConnect

Details

Currently only RSQLite and RMySQL are supported. To use either of these DBI implementations the
appropriate packages will need to be installed.

The register_sqglite_backend and register_mysql_backend are convenience wrappers to both
create the DBI connection and call register_db_backend for you.

Value

The DBI connection, invisibly

Author(s)

Jeff Gentry

See Also

store_tweets_db, store_users_db, load_tweets_db, load_users_db

retweets

Examples

Not run:
register_sqlite_backend("/path/to/sqlite/file")
tweets = searchTwitter("#scala")
store_tweets_db(tweets)
from_db = load_tweets_db()

End(Not run)

15

retweets Functions to work with retweets

Description

These functions can be used to return retweets or users who retweeted a tweet

Usage
retweets(id, n = 20, ...)
Arguments
id The ID of the tweet to get retweet information on
n The number of results to return, up to 100
Further arguments to pass on to httr
Value

For retweets the n most recent retweets of the original tweet.

For retweeters the n most recent users who have retweeted this tweet.

Author(s)
Jeff Gentry

See Also

showStatus

Examples

Not run:
retweets("”21947795900469248")

st = showStatus("21947795900469248")
retweeters(st$getId())

End(Not run)

16 searchTwitter

searchTwitter Search twitter

Description

This function will issue a search of Twitter based on a supplied search string.

Usage

searchTwitter(searchString, n=25, lang=NULL, since=NULL, until=NULL,
locale=NULL, geocode=NULL, sinceID=NULL, maxID=NULL,
resultType=NULL, retryOnRateLimit=120, ...)
Rtweets(n=25, lang=NULL, since=NULL, ...)

Arguments

searchString Search query to issue to twitter. Use "+" to separate query terms.

n The maximum number of tweets to return

lang If not NULL, restricts tweets to the given language, given by an ISO 639-1 code

since If not NULL, restricts tweets to those since the given date. Date is to be formatted
as YYYY-MM-DD

until If not NULL, restricts tweets to those up until the given date. Date is to be for-
matted as YYYY-MM-DD

locale If not NULL, will set the locale for the search. As of 03/06/11 only ja is effective,
as per the Twitter API

geocode If not NULL, returns tweets by users located within a given radius of the given
latitude/longitude. See Details below for more information

sincelD If not NULL, returns tweets with IDs greater (ie newer) than the specified ID

maxID If not NULL, returns tweets with IDs smaller (ie older) than the specified ID

resultType If not NULL, returns filtered tweets as per value. See details for allowed values.

retryOnRatelLimit

If non-zero the search command will block retry up to X times if the rate limit
is experienced. This might lead to a much longer run time but the task will
eventually complete if the retry count is high enough

Optional arguments to be passed to GET

Details

These commands will return any authorized tweets which match the search criteria. Note that
there are pagination restrictions as well as other limits on what can be searched, so it is always
possible to not retrieve as many tweets as was requested with the n argument. Authorized tweets
are public tweets as well as those protected tweets that are available to the user after authenticating
via registerTwitterOAuth.

searchTwitter 17

The searchString is always required. Terms can contain spaces, and multiple terms should be
separated with "+".

For the geocode argument, the values are given in the format latitude,longitude, radius, where
the radius can have either mi (miles) or km (kilometers) as a unit. For example geocode="'37.781157,-122.39720,1mi".

For the sinceID argument, if the requested ID value is older than the oldest available tweets, the
API will return tweets starting from the oldest ID available.

For the maxID argument, tweets upto this ID value will be returned starting from the oldest ID
available. Useful for paging.

The resultType argument specifies the type of search results received in API response. Default is
mixed. Allowed values are mixed (includes popular + real time results), recent (returns the most
recent results) and popular (returns only the most popular results).

The Rtweets function is a wrapper around searchTwitter which hardcodes in a search for #rstats.

Value

A list of status objects

Author(s)

Jeff Gentry

See Also

status

Examples

Not run:
searchTwitter("#beer”, n=100)
Rtweets(n=37)

Search between two dates
searchTwitter('charlie sheen', since='2011-03-01', until='2011-03-02")

geocoded results
searchTwitter('patriots', geocode='42.375,-71.1061111,10mi")

using resultType

searchTwitter('world cuptbrazil', resultType="popular”, n=15)
searchTwitter('from:hadleywickham', resultType="recent”, n=10)

End(Not run)

18 search_twitter_and_store

search_twitter_and_store
A function to store searched tweets to a database

Description

A convenience function designed to wrap the process of running a twitter search and pushing the
results to a database. If this is called more than once, the search will start with the most recent tweet
already stored.

Usage
search_twitter_and_store(searchString, table_name = "tweets"”, lang = NULL,
locale = NULL, geocode = NULL, retryOnRateLimit = 120, ...)
Arguments

searchString The search string to use, e.g. as one would in searchTwitter

table_name The database to store the tweets to, see register_db_backend

lang If not NULL, restricts tweets to the given language, given by an ISO 639-1 code

locale If not NULL, will set the locale for the search. As of 03/06/11 only ja is effective,
as per the Twitter API

geocode If not NULL, returns tweets by users located within a given radius of the given

latitude/longitude. See Details in link{searchTwitter}

retryOnRateLimit
If non-zero the search command will block retry up to X times if the rate limit
is experienced. This might lead to a much longer run time but the task will
eventually complete if the retry count is high enough

Optional arguments to be passed to GET

Details

All arguments but table_name are being passed directly to searchTwitter.

This function will check if table_name exists, and if so will also use a sincelID of the most re-
cent ID in the table. The search is performed, the returned tweets are stored in the database via
store_tweets_db.

Value

The number of tweets stored

Note

Jeff Gentry

setup_twitter_oauth 19

See Also

register_db_backend, searchTwitter, store_tweets_db

Examples
Not run:
register_sqlite_backend("sqlit_file")
n = search_twitter_and_store("#rstats”, "rstats_tweets"”)

End(Not run)

setup_twitter_oauth Sets up the OAuth credentials for a twitteR session

Description

This function wraps the OAuth authentication handshake functions from the httr package for a
twitteR session

Usage

setup_twitter_oauth(consumer_key, consumer_secret, access_token=NULL, access_secret=NULL)

Arguments

consumer_key The consumer key supplied by Twitter
consumer_secret
The consumer secret supplied by Twitter

access_token The access token supplied by Twitter

access_secret The access secret supplied by Twitter

Details

The httr package can cache authentication. See Token for details

If both access_token and access_secret are set (i.e. not NULL), these will be supplied directly to
the OAuth authentication instead of the browser based authentication dance one would normally ex-
perience. This requires you to already know the access tokens for your Twitter app. The usefuleness
of this feature is primarily in a headless environment where a web browser is not available.

Value

This is called for its side effect

Author(s)
Jeff Gentry

20 showStatus

See Also

Token, GET, POST

Examples

Not run:
setup_twitter_oauth("CONSUMER_KEY", "CONSUMER_SECRET")

End(Not run)

showStatus Functions to return statuses

Description

These functions can be used to retrieve specific tweets from the server

Usage
showStatus(id, ...)
lookup_statuses(ids, ...)
Arguments
id ID of a specific tweet, should be a String, but numbers are accepted
ids A vector of IDs to lookup, should be Strings but numbers are accepted
Optional arguments to be passed to GET (or POST, see Details)
Details

Ideally a POST request would be used for lookup_statuses, however currently there is a problem
(issue 78 on github) and GET is used.
Value

For showStatus, an object of class status

For lookup_statuses, a list of status objects. Note that these will not be in the same order as the
ids argument and that any id which could not be retrieved will not be present.

Author(s)
Jeff Gentry

See Also

status

status-class 21

Examples

Not run:
showStatus('123")
lookup_statuses(c("123", "234", "456"))

End(Not run)

status-class Class to contain a Twitter status

Description

Container for Twitter status messages, including the text as well as basic information

Details

The status class is implemented as a reference class. This class was previously implemented
as an S4 class, and for backward compatibility purposes the old S4 accessor methods have been
left in, although new code should not be written with these. An instance of a generator for this
class is provided as a convenience to the user as it is configured to handle most standard cases. To
access this generator, use the object statusFactory. Accessor set & get methods are provided
for every field using reference class $accessors() methodology (see setRefClass for more de-
tails). As an example, the screenName field could be accessed using object$getScreenName and
object$setScreenName.

The constructor of this object assumes that the user is passing in a JSON encoded Twitter status. It
is also possible to directly pass in the arguments.

Fields

text: The text of the status

screenName: Screen name of the user who posted this status
id: ID of this status

replyToSN: Screen name of the user this is in reply to
replyToUID: ID of the user this was in reply to
statusSource: Source user agent for this tweet

created: When this status was created

truncated: Whether this status was truncated

favorited: Whether this status has been favorited
retweeted: TRUE if this status has been retweeted

retweetCount: The number of times this status has been retweeted

Methods

toDataFrame: Converts this into a one row data.frame, with each field representing a column.
This can also be accomplished by the S4 style as.data.frame(objectName).

22 strip_retweets

Author(s)
Jeff Gentry

See Also

userTimeline, setRefClass

Examples

Not run:
st <- statusFactory$new(screenName="test"”, text="test message")
st$getScreenName()
st$getText()

Assume 'json' is the return from a Twitter call
st <- statusFactory$new(json)

st$getScreenName()

End(Not run)

strip_retweets A function to remove retweets

Description

Given a list of status objects, will remove retweets from the list to provide a "pure" set of tweets.

Usage

strip_retweets(tweets, strip_manual = TRUE, strip_mt = TRUE)

Arguments

tweets A list of status objects
strip_manual If TRUE will remove old style manual retweets

strip_mt If TRUE will remove modified tweets (MT)

Details

Newer style retweets are summarily removed regardless of options.

Older style retweets (aka manual retweets) are tweets of the form RT @user blah blah. If strip_manual
is TRUE, tweets containing the RT string will have everything including and to the right of the RT will
be removed. Everything to the left of the RT will remain, as this should be original content.

If strip_mt is TRUE, tweets will be stripped in the same manner as strip_manual but using the
string MT

taskStatus 23

Value

A list of status objects with retweeted content removed

Author(s)
Jeff Gentry

See Also

status

Examples

Not run:
tweets = searchTwitter("stuff")
no_retweets = strip_retweets(tweets)

End(Not run)

taskStatus A function to send a Twitter DM after completion of a task

Description

This function will run an R expression and send a direct message to a specified user on success or
failure.

Usage

taskStatus(expr, to, msg="")

Arguments
expr An R expression that will be run
to The user to send a message to, either character or an user object.
msg An extra message to append to the standard DM

Details

This function will run expr, and send a Direct Message (DM) upon completion which will report
the expression’s success or failure.

Value

Either the value of the expression or an object of class try-error.

24 timelines

Author(s)
Jeff Gentry

See Also
dmSend

Examples

Not run:
taskStatus(z<-5, "username”, session=sess)

End(Not run)

timelines Functions to view Twitter timelines

Description

These functions will allow you to retrieve various timelines within the Twitter universe

Usage
userTimeline(user, n=20, maxID=NULL, sinceID=NULL, includeRts=FALSE,
excludeReplies=FALSE, ...)
homeTimeline(n=25, maxID=NULL, sinceID=NULL, ...)
mentions(n=25, maxID=NULL, sinceID=NULL, ...)
retweetsOfMe(n=25, maxID=NULL, sinceID=NULL, ...)
Arguments
user The Twitter user to detail, can be character or an user object.
n Number of tweets to retrieve, up to a maximum of 3200
maxID Maximum ID to search for
sincelD Minimum (not inclusive) ID to search for
includeRts If FALSE any native retweets (not old style RT retweets) will be stripped from

the results
excludeReplies if TRUE any replies are stripped from the results

Optional arguments to be passed to GET

Value

A list of status objects

Author(s)
Jeff Gentry

twListToDF 25

See Also

getUser, status

Examples

Not run:
ut <- userTimeline('barackobama', n=100)

End(Not run)

twListToDF A function to convert twitteR lists to data.frames

Description

This function will take a list of objects from a single twitteR class and return a data.frame version
of the members

Usage

twListToDF (twList)
Arguments

twList A list of objects of a single twitteR class, restrictions are listed in details
Details

The classes supported by this function are status, user, and directMessage.

Value
A data. frame with rows corresponding to the objects in the list and columns being the fields of the
class

Author(s)
Jeff Gentry

See Also

status, user, directMessage

Examples

Not run:
zz <- searchTwitter("#rstats")
twListToDF (zz)

End(Not run)

26

updateStatus

updateStatus

Functions to manipulate Twitter status

Description

These functions can be used to set or delete a user’s Twitter status

Usage

tweet (text,

L)

updateStatus(text, lat=NULL, long=NULL, placeID=NULL,

displayCoords=NULL, inReplyTo=NULL, mediaPath=NULL,

bypassCharLimit=FALSE, ...)
deleteStatus(status, ...)
Arguments

text The text to use for a new status

status An object of class status

lat If not NULL, the latitude the status refers to. Ignored if no long parameter is
provideded

long If not NULL, the longitude the status refers to. Ignored if no lat parameter is
provideded

placeID If not NULL, provideds a place in the world. See Twitter documentation for
details

displayCoords Whether or not to put a pin on the exact coordinates a tweet has been sent from,
true or false if not NULL

inReplyTo If not NULL, denotes the status this is in reply to. Either an object of class status
or an ID value

mediaPath If not NULL, file path to a supported media format (PNG, JPG and GIF) to be
included in the status update

bypassCharLimit
If TRUE will not enforce the incoming tweet is less than 140 characters. This can
be useful when dealing with autoshortened links
Optional arguments to be passed to GET

Details

These messages will only operate properly if the user is authenticated via OAuth

The tweet and updateStatus functions are the same.

To delete a status message, pass in an object of class status, such as from the return value of

updateStatus.

user-class 27

Value

The updateStatus function will return an object of class status.

The deleteStatus returns TRUE on success and an error if failure occurs.

Author(s)
Jeff Gentry

Examples

Not run:
ns <- updateStatus('this is my new status message')
ooops, we want to remove it!
deleteStatus(ns)

End(Not run)

user-class A container object to model Twitter users

Description

This class is designed to represent a user on Twitter, modeling information available

Details

The user class is implemented as a reference class. This class was previously implemented as
an S4 class, and for backward compatibility purposes the old S4 accessor methods have been left
in, although new code should not be written with these. An instance of a generator for this class
is provided as a convenience to the user as it is configured to handle most standard cases. To
access this generator, user the object userFactory. Accessor set & get methods are provided
for every field using reference class $accessors() methodology (see setRefClass for more de-
tails). As an example, the screenName field could be accessed using object$getScreenName and
object$setScreenName.

The constructor of this object assumes that the user is passing in a JSON encoded Twitter user. It is
also possible to directly pass in the arguments.

Fields

name: Name of the user

screenName: Screen name of the user

id: ID value for this user

lastStatus: Last status update for the user
description: User’s description

statusesCount: Number of status updates this user has had

28 user-class

followersCount: Number of followers for this user
favoritesCount: Number of favorites for this user
friendsCount: Number of followees for this user

url: A URL associated with this user

created: When this user was created

protected: Whether or not this user is protected

verified: Whether or not this user is verified

location: Location of the user

listedCount: The number of times this user appears in public lists

followRequestSent: If authenticated via OAuth, will be TRUE if you’ve sent a friend request to
this user

profileImageUrl: URL of the user’s profile image, if one exists

Methods

getFollowerIDs(n=NULL, ...): Will return a vector of twitter user IDs representing followers of
this user, up to a maximum of n values. If n is NULL, all followers will be returned

getFollowers(n=NULL, ...): Will return alist of user objects representing followers of this user,
up to a maximum of n values. If n is NULL, all followers will be returned

getFriendIDs(n=NULL, ...): Will return a vector of twitter user IDs representing users this user
follows, up to a maximum of n values. If n is NULL, all friends will be returned

getFriends(n=NULL, ...): Will return a list of user objects representing users this user follows,
up to a maximum of n values. If n is NULL, all friendss will be returned

toDataFrame(row.names=NULL, optional=FALSE): Converts this into a one row data.frame,
with each field except for lastStatus representing a column. This can also be accomplished
by the S4 style as.data.frame(objectName).

Author(s)
Jeff Gentry

See Also

status, setRefClass

Examples

This example is run, but likely not how you want to do things
us <- userFactory$new(screenName="test", name="Joe Smith")
us$getScreenName()

us$getName ()

Not run:
Assume 'json' is the return from a Twitter call
us <- userFactory$new(json)
us$getScreenName ()

End(Not run)

use_oauth_token 29

use_oauth_token Sets up the OAuth credentials for a twitteR session from an existing
Token object

Description

This function uses an existing httr OAuth Token in the Twitter session

Usage

use_oauth_token(twitter_token)

Arguments

twitter_token An httr Token object

Details

This function is an escape hatch for nonstandard OAuth scenarios. Use setup_twitter_token unless
it doesn’t work for your use case.

Value

This is called for its side effect

Author(s)
Anand Patil

See Also

Token

Examples

Not run:

library(httr)

library(twitteR)

token <- Token2.0@$new(
params = list(as_header=TRUE),
app = oauth_app("fun.with.twitter”, "no.key", "no.secret”),
endpoint = oauth_endpoints("twitter"),
credentials = list(access_token = "AAAAAAAAAAAAAAAAAAA%3IDAAAAAAAAAAAAAA") ,
cache = FALSE

)

use_oauth_token(token)

End(Not run)

Index

* classes
directMessage-class, 3
status-class, 21
user-class, 27

x interface
dmGet, 4
favorites, 5
friendships, 6
getCurRatelLimitInfo, 7
getTrends, 8
getUser, 9
import_statuses, 11
registerTwitterOAuth, 13
searchTwitter, 16
setup_twitter_oauth, 19
showStatus, 20
taskStatus, 23
timelines, 24
twListToDF, 25
updateStatus, 26
use_oauth_token, 29

* utilities
decode_short_url, 2
get_latest_tweet_id, 10
load_tweets_db, 12
register_db_backend, 14
search_twitter_and_store, 18
strip_retweets, 22

[[,twitterObjList-method

(status-class), 21

as.data.frame, status-method
(status-class), 21

as.data.frame, twitterObj-method
(status-class), 21

as.data.frame,user-method (user-class),
27

availableTrendLocations (getTrends), 8

buildStatus (status-class), 21

buildUser (user-class), 27

closestTrendLocations (getTrends), 8
created (user-class), 27

created, status-method (status-class), 21
created,user-method (user-class), 27

data.frame, 3, 21, 25, 28
decode_short_url, 2

deleteStatus (updateStatus), 26
description (user-class), 27
description,user-method (user-class), 27
directMessage, 4, 5, 25

directMessage (directMessage-class), 3
directMessage-class, 3

dmDestroy, 3, 4

dmDestroy (dmGet), 4

dmFactory (directMessage-class), 3
dmGet, 4, 4

dmSend, 4, 24

dmSend (dmGet), 4

dmSent (dmGet), 4

favorited (status-class), 21

favorited, status-method (status-class),
21

favorites, 5

favoritesCount (user-class), 27

favoritesCount,user-method
(user-class), 27

followersCount (user-class), 27

followersCount,user-method
(user-class), 27

followRequestSent (user-class), 27

followRequestSent,user-method
(user-class), 27

friendsCount (user-class), 27

friendsCount,user-method (user-class),
27

friendships, 6

INDEX

GET, 9, 16, 18, 20, 24, 26

get_latest_tweet_id, 10

getCurRatelLimitInfo, 7

getTrends, 8

getTwitterOAuth (registerTwitterOAuth),
13

getUser, 6,9, 25

homeTimeline (timelines), 24

id (status-class), 21

id, status-method (status-class), 21
id,user-method (user-class), 27
import_obj (import_statuses), 11
import_statuses, 11

import_trends (import_statuses), 11
import_users (import_statuses), 11

json_to_statuses (import_statuses), 11
json_to_trends (import_statuses), 11
json_to_users (import_statuses), 11

lastStatus (user-class), 27
lastStatus,user-method (user-class), 27
listedCount (user-class), 27
listedCount,user-method (user-class), 27
load_tweets_db, 12, /4
load_users_db, /14

load_users_db (load_tweets_db), 12
location (user-class), 27
location,user-method (user-class), 27
lookup_statuses (showStatus), 20
lookupUsers (getUser), 9

mentions, 10
mentions (timelines), 24

name (user-class), 27
name,user-method (user-class), 27

POST, 20

profileImageUrl (user-class), 27

profileImageUrl,user-method
(user-class), 27

protected (user-class), 27

protected,user-method (user-class), 27

register_db_backend, 11, 12, 14, 18, 19
register_mysqgl_backend, 12

31

register_mysql_backend
(register_db_backend), 14
register_sqlite_backend, 12
register_sqlite_backend
(register_db_backend), 14
registerTwitterOAuth, 5, 7, 13, 16
replyToSID (status-class), 21
replyToSID, status-method
(status-class), 21
replyToSN (status-class), 21
replyToSN, status-method (status-class),
21
replyToUID (status-class), 21
replyToUID, status-method
(status-class), 21
resource_families
(getCurRatelLimitInfo), 7
retweetCount (status-class), 21
retweetCount, status-method
(status-class), 21
retweeted (status-class), 21
retweeted, status-method (status-class),
21
retweeters (retweets), 15
retweets, 15
retweetsOfMe (timelines), 24
Rtweets (searchTwitter), 16

screenName (user-class), 27
screenName, status-method
(status-class), 21
screenName, user-method (user-class), 27
search_twitter_and_store, 18
searchTwitteR (searchTwitter), 16
searchTwitter, 16, 18, 19
setRefClass, 3, 4, 21, 22,27, 28
setup_twitter_oauth, 13, 19
show,directMessage-method
(directMessage-class), 3
show, status-method (status-class), 21
show, twitterObjList-method
(status-class), 21
show,user-method (user-class), 27
showStatus, 75, 20
status, 6, 11, 17, 20, 22-28
status (status-class), 21
status-class, 21
statusesCount (user-class), 27

32

statusesCount,user-method (user-class),
27

statusFactory (status-class), 21

statusSource (status-class), 21

statusSource, status-method
(status-class), 21

statusText (status-class), 21

statusText,status-method
(status-class), 21

stop, 10

store_tweets_db, /4, 18, 19

store_tweets_db (load_tweets_db), 12

store_users_db, /4

store_users_db (load_tweets_db), 12

strip_retweets, 22

taskStatus, 23

text,status-method (status-class), 21

timelines, 24

Token, 19, 20, 29

truncated (status-class), 21

truncated, status-method (status-class),
21

tweet (updateStatus), 26

tweetCount (user-class), 27

tweetCount,user-method (user-class), 27

twListToDF, 25

updateStatus, 26
use_oauth_token, 29

user, 4, 5,9-11,23-25

user (user-class), 27

user-class, 27

userFactory (user-class), 27
userTimeline, 22

userTimeline (timelines), 24

userURL (user-class), 27
userURL,user-method (user-class), 27

verified (user-class), 27
verified,user-method (user-class), 27

INDEX

	decode_short_url
	directMessage-class
	dmGet
	favorites
	friendships
	getCurRateLimitInfo
	getTrends
	getUser
	get_latest_tweet_id
	import_statuses
	load_tweets_db
	registerTwitterOAuth
	register_db_backend
	retweets
	searchTwitter
	search_twitter_and_store
	setup_twitter_oauth
	showStatus
	status-class
	strip_retweets
	taskStatus
	timelines
	twListToDF
	updateStatus
	user-class
	use_oauth_token
	Index

