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Abstract

We describe the R package uGMAR, which provides tools for estimating and analyzing
the Gaussian mixture autoregressive model, the StudentŠs t mixture autoregressive model,
and the Gaussian and StudentŠs t mixture autoregressive model. These three models
constitute an appealing family of mixture autoregressive models that we call the GSMAR
models. The model parameters are estimated with the method of maximum likelihood by
running multiple rounds of a two-phase estimation procedure in which a genetic algorithm
is used to Ąnd starting values for a gradient based method. For evaluating the adequacy of
the estimated models, uGMAR utilizes so-called quantile residuals and provides functions
for graphical diagnostics as well as for calculating formal diagnostic tests. uGMAR also
facilitates simulation from the GSMAR processes and forecasting future values of the
process by a simulation-based Monte Carlo method. We illustrate the use of uGMAR

with the monthly U.S. interest rate spread between the 10-year and 1-year Treasury
rates.

Keywords: mixture autoregressive model, regime-switching, Gaussian mixture, StudentŠs t
mixture.

1. Introduction

A popular method for modeling univariate time series is to employ a linear autoregressive
(AR) model that assumes the process to be generated by a weighted sum of the preceding
p observations, an intercept term, and a random error. The error process is often assumed
to be serially uncorrelated with zero mean and constant variance. This encompasses condi-
tionally homoskedastic processes, such as independent and identically distributed (IID) pro-
cesses, as well as conditionally heteroskedastic processes, such as autoregressive conditional
heteroskedasticity (ARCH) processes (Engle 1982) and generalized autoregressive conditional
heteroskedasticity (GARCH) processes (Bollerslev 1986).

Several R packages accommodate linear AR modeling with various types of error processes.
The R package forecast (Hyndman, Athanasopoulos, Bergmeir, Caceres, Chhay, OŠHara-Wild,
Petropoulos, Razbash, Wang, and Yasmeen 2021), for instance, accommodates estimation of
AR models with seasonal components. The R package fGarch (Wuertz, Setz, Chalabi, Boudt,
Chausse, and Miklovac 2020), on the other hand, facilitates estimation of AR models with
ARCH and GARCH errors following various distributions, including normal, StudentŠs t-, and
generalized error distributions and their skewed versions. A more comprehensive set of error
processes are provided in the popular R package rugarch (Ghalanos 2020). It accommodates
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a rich set of different GARCH processes with several error distributions, including the regular
and skewed versions of normal, t-, and generalized error distributions, as well as generalized
hyperbolic normal and inverse Gaussian distributions, to name a few.

A linear AR model with potentially skewed GARCH errors can often Ąlter the autocorrelation
and conditional heteroskedasticity from the series very well. But in some cases, it cannot
adequately capture all the relevant characteristics of the series, including shifts in the mean
or volatility, and changes in the dynamics of the process. Such nonlinear features frequently
occur in economic time series when the underlying data generating dynamics vary in time,
for example, depending on the speciĄc state of the economy.

Various types of time series models capable of capturing such regime-switching behavior have
been proposed, one of them being the class of mixture models introduced by Le, Martin,
and Raftery (1996) and further developed by, among others, Wong and Li (2000, 2001b,a),
Glasbey (2001), Lanne and Saikkonen (2003), Kalliovirta, Meitz, and Saikkonen (2015), Meitz,
Preve, and Saikkonen (2023), and Virolainen (2022). Following the recent developments by
Kalliovirta et al. (2015), Meitz et al. (2023), and Virolainen (2022), we consider the Gaussian
mixture autoregressive (GMAR) model, the StudentŠs t mixture autoregressive (StMAR)
model, and the Gaussian and StudentŠs t mixture autoregressive (G-StMAR) model. These
three models constitute an appealing family of mixture autoregressive models that we call
the GSMAR models.

A GSMAR process generates each observation from one of its mixture components, which
are either conditionally homoskedastic linear Gaussian autoregressions or conditionally het-
eroskedastic linear StudentŠs t autoregressions. The mixture component that generates each
observation is randomly selected according to the probabilities determined by the mixing
weights that, for a pth order model, depend on the full distribution of the previous p observa-
tions. Consequently, the regime-switching probabilities may depend on the level, variability,
kurtosis, and temporal dependence of the past observations. The speciĄc formulation of
the mixing weights also leads to attractive theoretical properties such as ergodicity and full
knowledge of the stationary distribution of p + 1 consecutive observations.

This paper describes the R package uGMAR providing a comprehensive set of easy-to-use
tools for GSMAR modeling, including unconstrained and constrained maximum likelihood
(ML) estimation of the model parameters, quantile residual based model diagnostics, sim-
ulation from the processes, and forecasting. The emphasis is on estimation, as it can, in
our experience, be rather tricky. In particular, due to the endogenously determined mixing
weights, the log-likelihood function has a large number of modes, and in large areas of the
parameter space, the log-likelihood function is Ćat in multiple directions. The log-likelihood
functionŠs global maximum point is also frequently located very near the boundary of the pa-
rameter space. It turns out, however, that such near-the-boundary estimates often maximize
the log-likelihood function for rather a technical reason, and it might be more appropriate to
prefer an alternative estimate based on the largest local maximum point that is clearly in the
interior of the parameter space.

The model parameters are estimated by running multiple rounds of a two-phase estimation
procedure in which a modiĄed genetic algorithm is used to Ąnd starting values for a gradient
based variable metric algorithm. Because of the multimodality of the log-likelihood function,
some of the estimation rounds may end up in different local maximum points, thereby enabling
the researcher to build models not only based on the global maximum point but also on
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the local ones. The estimated models can be conveniently examined with the summary and
plot methods. For evaluating their adequacy, uGMAR utilizes quantile residual diagnostics
in the framework presented in Kalliovirta (2012), including graphical diagnostics as well
as KalliovirtaŠs (2012) diagnostic tests that take into account uncertainty about the true
parameter value. Following Kalliovirta et al. (2015) and Meitz et al. (2023), forecasting is
based on a Monte Carlo simulation method.

Other statistical software implementing the GSMAR models include the StMAR Toolbox

for MATLAB (Meitz, Preve, and Saikkonen 2018). It currently (version 1.0.0) covers the
StMAR model of autoregressive orders p = 1, 2, 3, 4 and M = 1, 2, 3 mixture components,
and it contains tools for maximum likelihood estimation, calculation of quantile residuals,
simulation, and forecasting. Also the StMAR Toolbox estimates the model parameters by
using a genetic algorithm to Ąnd starting values for a gradient based method, but uGMAR

takes the procedure of Meitz et al. (2018, 2023) further by modifying a genetic algorithm for
more efficient estimation. uGMAR also has the advantage that it does not impose restrictions
on the order of the model and it provides a wider variety of tools for analyzing the estimated
models; for instance, functions for calculating quantile residual diagnostic tests (Kalliovirta
2012) and plotting the graphs of the proĄle log-likelihood functions about the estimate.

The R package gmvarkit (Virolainen 2018) functions similarly to uGMAR and accommodates
multivariate versions of the GSMAR models, including structural models with statistically
identiĄed shocks. These models include the (structural) Gaussian mixture vector autore-
gressive model (Kalliovirta, Meitz, and Saikkonen 2016; Virolainen 2021b), the (structural)
StudentŠs t mixture vector autoregressive model (Virolainen 2021a), and the (structural)
Gaussian and StudentŠs t mixture vector autoregressive model (Virolainen 2021a). The R

package mixAR (Boshnakov and Ravagli 2021), in turn, allows frequentist and Bayesian es-
timation of mixture (vector) autoregressive models with constant mixing weights (e.g., Wong
and Li 2000; Fong, Li, Yau, and Wong 2007) and various error distributions.

The remainder of this paper is organized as follows. Section 2 introduces the GSMAR models
and discusses some of their properties. Section 3 discusses estimation of the model parameters
and model selection. It also illustrates how the GSMAR models can be estimated and exam-
ined with uGMAR, and how parameter constraints can be tested. In Section 4, we describe
quantile residuals and demonstrate how they can be utilized to evaluate model adequacy in
uGMAR. Section 5 shows how the GSMAR models can be built with given parameter values.
In Section 6, we Ąrst show how to simulate observations from a GSMAR process, and then we
illustrate how to forecast future values of a GSMAR process with a simulation-based Monte
Carlo method. Section 7 concludes and collects some useful functions in uGMAR to a single
table for convenience. Appendix A explains why some maximum likelihood estimates, that
are very near the boundary of the parameter space, might be inappropriate and demonstrates
that a local maximum point that is clearly in the interior of the parameter space can often
be a more reasonable estimate. Finally, Appendix B derives closed form expressions for the
quantile residuals of the GSMAR models.

Throughout this paper, we use the monthly U.S. interest rate spread between the 10-year and
1-year Treasury rates for the empirical illustrations. We deploy the notation nd(µ, Γ) for the
d-dimensional normal distribution with mean µ and (positive deĄnite) covariance matrix Γ,
and td(µ, Γ, ν) for the d-dimensional t-distribution with mean µ, (positive deĄnite) covariance
matrix Γ, and ν > 2 degrees of freedom. The corresponding density functions are denoted as
nd(·;µ, Γ) and td(·;µ, Γ, ν), respectively. By 1p = (1, ..., 1) (p × 1), we denote p-dimensional
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vector of ones.

2. Models

This section introduces the GMAR model (Kalliovirta et al. 2015), the StMAR model (Meitz
et al. 2023), and the G-StMAR model (Virolainen 2022), a family of mixture autoregressive
models that we call the GSMAR models. First, we consider the models in a general framework
and then proceed to their speciĄc deĄnitions. For brevity, we only give the deĄnition of the
more general G-StMAR model but explain how the GMAR and StMAR models are obtained
as special cases of it, namely, by taking all the component models to be of either Gaussian or
StudentŠs t type.

2.1. Mixture autoregressive models

Let yt, t = 1, 2, ..., be the real valued time series of interest, and let Ft−1 denote the σ-algebra
generated by the random variables ¶yt−j , j > 0♢. For a GSMAR model with autoregressive
order p and M mixture components, we have

yt =
M
∑

m=1

sm,t(µm,t + σm,tεm,t), εm,t ∼ IID(0, 1), (1)

µm,t = φm,0 +
p
∑

i=1

φm,iyt−i, m = 1, ..., M, (2)

where σm,t > 0 are Ft−1-measurable, εm,t are independent of Ft−1, φm,0 ∈ R, and s1,t, ..., sM,t

are unobservable regime variables such that for each t, exactly one of them takes the value
one and the others take the value zero. Given the past of yt, sm,t and εm,t are assumed
to be conditionally independent, and the conditional probability for an observation to be
generated from the mth regime at time t is expressed in terms of (Ft−1-measurable) mixing
weights αm,t ≡ P (sm,t = 1♣ Ft−1) that satisfy

∑M
m=1 αm,t = 1. Furthermore, we assume

that for each component model, the autoregressive parameters satisfy the usual stationarity
condition, 1 −

∑p
i=1 φm,iz

i ̸= 0 for ♣z♣ ≤ 1, which guarantees stationarity of the GSMAR
models (Virolainen 2022, Theorem 1).

The deĄnition (1) and (2) implies that at each t, the observation is generated by a linear
autoregression corresponding to some randomly selected (unobserved) mixture component
m, and that µm,t and σ2

m,t can be interpreted as the conditional mean and variance of this
component process. In the GMAR model (Kalliovirta et al. 2015), the mixture components are
conditionally homoskedastic Gaussian autoregressions, whereas in the StMAR model (Meitz
et al. 2023), they are conditionally heteroskedastic Students t autoregressions, while the G-
StMAR model (Virolainen 2022) combines both types of mixture components. The mixing
weights are functions of the preceding p observations.

2.2. The Gaussian and StudentŠs t mixture autoregressive model

In the G-StMAR model, for m = 1, ..., M1 in (1), the terms εm,t have standard normal
distributions and the conditional variances σ2

m,t are constants σ2
m. For m = M1 + 1, ..., M ,

the terms εm,t follow the t-distribution t1(0, 1, νm + p) and the conditional variances σ2
m,t are
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deĄned as

σ2
m,t =

νm − 2 + (yt−1 − µm1p)′
Γ

−1
m (yt−1 − µm1p)

νm − 2 + p
σ2

m, (3)

where yt−1 = (yt−1, ..., yt−p) (p × 1), νm > 2 is a degrees of freedom parameter, σ2
m > 0

is a variance parameter, µm = φ0/(1−
∑p

i=1 φm,i) is the stationary mean, and Γm is the
stationary (p × p) covariance matrix of the mth component process (see Virolainen 2022,
Section 2.1).

This speciĄcation leads to a model in which the conditional density function of yt given its
past, f (·♣ Ft−1), is

f (yt♣Ft−1) =
M1
∑

m=1

αm,tn1(yt; µm,t, σ2
m) +

M
∑

m=M1+1

αm,tt1

(

yt; µm,t, σ2
m,t, νm + p



. (4)

That is, the Ąrst M1 component processes of the G-StMAR model are homoskedastic Gaussian
autoregressions, and the remaining M2 ≡ M − M1 component processes are heteroskedastic
StudentŠs t autoregressions.

In the GMAR model (Kalliovirta et al. 2015), all M component processes are Gaussian au-
toregressions, so its conditional density function is obtained by setting M1 = M and dropping
the second sum in (4). In the StMAR model (Meitz et al. 2023), all M component processes
are StudentŠs t autoregressions, so its conditional density function is obtained by setting
M1 = 0 and dropping the Ąrst sum in (4). As the component processes of the G-StMAR
model coincide with those of the GMAR model and the StMAR model, we often refer to
them as GMAR type or StMAR type, accordingly.

In order to specify the mixing weights, we Ąrst deĄne the following function for notational
convenience. Let

dm(y; µm1p, Γm, νm) =

{

np(y; µm1p, Γm), when m ≤ M1,
tp(y; µm1p, Γm, νm), when m > M1,

(5)

where the p-dimensional densities np(y; µm1p, Γm) and tp(y; µm1p, Γm, νm) correspond to the
stationary distribution of the mth component process (given, for example, in Virolainen 2022,
Equations (2.3) and (2.8)). The mixing weights of the G-StMAR model are deĄned as

αm,t =
αmdm(yt−1; µm1p, Γm, νm)

∑M
n=1 αndn(yt−1; µn1p, Γn, νn)

, (6)

where the parameters α1, ..., αM satisfy
∑M

m=1 αm = 1. The mixing weights of the GMAR
model are obtained from (5) and (6) by setting M1 = M , whereas the mixing weights of the
StMAR model are obtained by setting M1 = 0.

Because the mixing weights are weighted stationary densities corresponding to the previous
p observations, an observation is more likely to be generated from the regime with higher
relative weighted likelihood. Moreover, as the mixing weights depend on the full distribution
of the previous p observations, the regime-switching probabilities may depend on the level,
variability, kurtosis, and temporal dependence of the past observations. This is a convenient
property for forecasting, and it also enables the researcher to associate speciĄc characteristics
to different regimes.
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The speciĄc formulation of the mixing weights also leads to attractive theoretical proper-
ties. SpeciĄcally, the G-StMAR process yt = (yt, ..., yt−p+1) (p × 1), t = 1, 2, ..., is ergodic,
and it has fully known marginal stationary distribution that is characterized by the density
(Virolainen 2022, Theorem 1; see the proof of Theorem 1 for the stationary distribution of
1, ..., p + 1 consecutive observations)

f(y) =
M1
∑

m=1

αmnp(y; µm1p, Γm) +
M2
∑

m=M1+1

αmtp(y; µm1p, Γm, νm). (7)

That is, the stationary distribution is a mixture of M1 p-dimensional Gaussian distribu-
tions and M2 p-dimensional StudentŠs t-distributions with constant mixing weights αm, m =
1, ..., M . For h = 0, ..., p, the marginal stationary distribution of (yt, ..., yt−h) is also a mixture
of Gaussian and StudentŠs t distributions with constant mixing weights αm, so the mixing
weights parameters αm can be interpreted as the unconditional probabilities of an observation
being generated from the mth component process.

In uGMAR, the parameters of the GSMAR models are collected to a (M(p+3)+M2 −1×1)
vector θ ≡ (ϑ1, ...,ϑM , α1, ..., αM−1,ν), where ϑm = (φm,0,ϕm, σ2

m), ϕm = (φm,1, ..., φm,p),
m = 1, ..., M , and ν = (νM1+1, ..., νM ). The parameter αM is omitted because it is obtained
from the restriction

∑M
m=1 αm = 1, and in the GMAR model, the vector ν is omitted, as

the model does not contain degrees of freedom parameters. The knowledge of the parameter
vector is particularly required for building models with given parameter values, which is
discussed in Section 5.

3. Estimation and model selection

3.1. Log-likelihood function

uGMAR employs the method of maximum likelihood (ML) for estimating the parameters of
the GSMAR models. Suppose the observed time series is y−p+1, ..., y0, y1, ..., yT and that the
initial values are stationary. Then, the log-likelihood function of the G-StMAR model takes
the form

L(θ) = log





M1
∑

m=1

αmnp(y0; µm1p, Γm) +
M
∑

m=M1+1

αmtp(y0; µm1p, Γm, νm)



+
T
∑

t=1

lt(θ), (8)

where

lt(θ) = log





M1
∑

m=1

αm,tn1(yt; µm,t, σ2
m) +

M
∑

m=M1+1

αm,tt1

(

yt; µm,t, σ2
m,t, νm + p





 , (9)

and the density functions nd(·; ·) and td (·; ·) follow the notation described in Section 2.2. Log-
likelihood functions of the GMAR model and the StMAR model can be obtained as special
cases by setting M1 = M or M1 = 0, respectively, and dropping the redundant sums.

If stationarity of the initial values seems unreasonable, one can condition on the initial values
by dropping the Ąrst term on the right hand side of (8) and base the estimation on the resulting
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conditional log-likelihood function. The ML estimator of a stationary GSMAR model is
strongly consistent and has the conventional limiting distribution under the conventional
high level conditions as is given in Kalliovirta et al. (2015, pp.254-255), Meitz et al. (2023,
Theorem 3), and Virolainen (2022, Theorem 2).

3.2. Two-phase estimation procedure

Finding the ML estimate amounts to maximizing the log-likelihood function (8) over a high
dimensional parameter space satisfying several constraints. Due to the complexity of the
log-likelihood function, Ąnding an analytical solution is infeasible, so numerical optimization
methods are required. Following Dorsey and Mayer (1995) and Meitz et al. (2023, 2018),
uGMAR employs a two-phase estimation procedure in which a genetic algorithm is used
to Ąnd starting values for a gradient based method, which then accurately converges to a
nearby local maximum or saddle point. Because of the presence of multiple local maxima, a
(sometimes large) number of estimation rounds should be performed to obtain reliable results,
for which uGMAR makes use of parallel computing to shorten the estimation time.

The genetic algorithm in uGMAR is, at core, mostly based on the description by Dorsey and
Mayer (1995) but several modiĄcations have been deployed to improve its performance. The
modiĄcations include the ones proposed by Patnaik and Srinivas (1994) and Smith, Dike,
and Stegmann (1995) as well as further adjustments that take into account model speciĄc
issues related to the mixing weightsŠ dependence on the preceding observations. For a more
detailed description of the genetic algorithm and its modiĄcations, see Virolainen (2022,
Appendix A). After running the genetic algorithm, the estimation is Ąnalized with a variable
metric algorithm (Nash 1990, algorithm 21, implemented by R Core Team 2021) using central
difference approximation for the gradient of the log-likelihood function.

3.3. Model selection

Before illustrating with examples how the GSMAR models can be estimated with uGMAR,
it is helpful to Ąrst brieĆy discuss the problem of model selection. Finding a suitable GSMAR
model involves several selections: one needs to choose the type of the model (GMAR, StMAR,
or G-StMAR), the autoregressive order p, and the number of mixture components M (in
the G-StMAR model, the number of GMAR type regimes M1 and the number of StMAR
type regimes M2). Following Kalliovirta et al. (2015, Section 3.1), we suggest starting the
model selection by Ąrst considering linear AR models, and then building up to the more
complex regime-switching models if the linear models are found inadequate. After Ąnding a
suitable GSMAR model, simpliĄcations obtained by parameter restrictions can be considered
(constrained estimation is discussed in Section 3.6, testing the constraints in Section 3.7, and
diagnostics checks for evaluating the adequacy of the model in Section 4).

When selecting the type of the GSMAR model, it is useful to take into account the features of
the different types of models. The GMAR model incorporates linear Gaussian AR processes
as its mixture components and can Ćexibly model changes in the conditional mean. But
as its component processes are conditionally homoskedastic, it can capture changes in the
conditional variance only through the regime-switching dynamics. The StMAR model, on
the other hand, incorporates ARCH type conditional heteroskedasticity within each regime
with the conditional variance (3), and can thereby account for stronger forms of conditional
heteroskedasticity. In the StMAR model, the autoregressive order p is also the lag order of the
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ARCH type conditional variance. The conditional variance depends on the past observations
through the same parameters as the conditional mean (2), which can be restrictive when the
regime-speciĄc conditional mean is strong but conditional variance is weak1 (or vice versa).
It may therefore be worthwhile to Ąrst try whether the simpler GMAR model can adequately
capture the characteristics of the series.

If the conditional variance is constant in some regimes but time-varying in other regimes, the
G-StMAR model can be employed, as it contains both conditionally homoskedastic GMAR
type regimes and conditionally heteroskedastic StMAR type regimes. For choosing the number
of GMAR and StMAR type regimes in the G-StMAR model, we suggest following the strategy
of Virolainen (2022, Section 4) and Ąrst Ąnding a suitable StMAR model. If the estimated
StMAR model contains overly large degrees of freedom parameter estimates, those regimes
should be switched to GMAR type by estimating the appropriate G-StMAR model (this is
discussed in more detail Section 3.4).

For the illustrations, we use the monthly U.S. interest rate spread between the 10-year and
1-year Treasury constant maturity rates, covering the period from 1982 January to 2020
December (468 observations). The series was retrieved from the Federal Reserve Bank of St.
Louis database. After installing uGMAR, the data can be loaded with the following lines of
code:

R> library("uGMAR")

R> data("M10Y1Y", package = "uGMAR")

For Ąnding the suitable type and order of the model, it is often useful to plot several Ągures
illustrating the statistical properties of the series. A time series plot can be examined to
obtain an overall perception of series, and to investigate whether there seem to be apparent
changes in the dynamics of series, or shifts in the mean or volatility that would indicate a
possible presence of multiple regimes.

The time series plot of the interest rate spread M10Y1Y is shown in the top left panel of Figure 2
(in Section 3.5). It shows that the process consistently produces consecutive observations of
the same magnitude, which are then followed by a transition to another magnitude. There
thus appears to be shifts in the mean of the process and the changes are occasionally rapid.

A non-parametric estimate of the density function, such as a kernel density estimate, can
be examined to evaluate whether the marginal density of a linear AR model can adequately
describe it, and if not, what might be correct number of regimes. Multiple modes in the
marginal distribution can be accounted for by accommodating each one of them with a regime
in the GSMAR model. Skewness and many other forms of non-Gaussianity can also be
accommodated with a mixture of normal or t-distributions, but it is less straightforward to
determine the correct number of regimes. One should, nevertheless, be conservative with the
choice of M , because with too many regimes in the model, some of the parameters are not
identiĄed (see Kalliovirta et al. 2015, Sections 3.1 and 3.2.2 and the references therein).

A kernel density estimate of the interest rate spread is depicted in the right panel of Figure 2
(black solid line). There are two visible modes in the density function, so a linear model
(with unimodal error distribution) is clearly inadequate to describe it, while a two-regime

1By strong (weak) conditional variance or mean, we mean strong (weak) dependence on the preceding
observations.
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Figure 1: The sample partial autocorrelation function of the series M10Y1Y for the lags 1, ..., 25
(on the right). The sample partial autocorrelation function of the Pearson residuals of a
Gaussian AR(4) model (on the middle) and of the squared residuals (on the right) for the
lags 1, ..., 25. The blue dashed lines are the 95% critical bounds for partial autocorrelation
coefficients of an IID process.

mixture model could be appropriate. Even a three-regime model could be considered in order
to explain the hump shape in the right tail of the distribution.

Examining the sample partial autocorrelation function (PACF) of the series can help in se-
lecting the correct autoregresive order p, as for a pth order AR process, there should be a
visible break in the PACF after the lag p. If the series is not autocorrelated, the sample
partial autocorrelation function of the squared series may similarly help to detect the order
of ARCH type conditional heteroskedasticity. In the case of an autocorrelated series, it might
be useful to Ąrst Ąt an AR model with a suitable autoregressive order, and then examine
the PACF of the squared residuals. The sample partial autocorrelation function of the series
M10Y1Y (calculated using the function pacf from the package stats, R Core Team 2021) is
presented in the left panel of Figure 1.

Figure 1 shows that the PACF of the series has very large partial autocorrelation coefficient
(PACC) at the Ąrst lag, relatively large PACCs at the second and fourth lags, and visibly
smaller PACCs after the fourth lag. The autoregressive order p = 4 thereby seems a reasonable
candidate for a parsimonious AR model.2 Hence, we Ątted a Gaussian AR(4) model to the
series and examined the PACF of its residuals and squared residuals, which are depicted in
the middle and right panels of Figure 1, respectively.

The PACF of the AR(4) modelŠs residuals shows that there is not much autocorrelation
left in the residuals, so the autoregressive order p = 4 seems sufficient for capturing the
autocorrelation structure of the series. The PACF of the AR(4) modelŠs squared residuals
shows PACCs slightly outside the 95% critical bounds at lags 1, 3, and 8. Thereby the order 4
could be somewhat sufficient for modelling the (potentially present) ARCH type conditional
heteroskedasticity, but the order 9 could also be considered for a less parsimonious model, as
the lag 8 PACC is relatively large. A StMAR model might, therefore, be appropriate with
the autoregressive order p = 4, although it may not be sufficient for modelling the conditional
heteroskedasticity at larger lags. As discussed above, the two modes in the kernel density
estimate of the series, on the other hand, indicate that two regimes seems like a good starting

2It turns out that the order p = 4 also minimizes the Akaike information criterion among the Gaussian
AR(p) models, p = 1, ..., 24, based on the exact log-likelihood function (not shown).
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point for building the model.

If the candidate model is found inadequate, one may try to use a different autoregressive
order p or to add a regime to the model (or switch to the StMAR model, if a GMAR model
is found inadequate). Note that while with linear AR models increasing the autoregressive
order typically improves the Ąt, this is not necessarily the case with GSMAR models, as the
autoregressive order affects the regime-switching dynamics. In particular, because the mixing
weights (6) are calculated using the whole joint distribution of the previous p observations,
with a small p, the regime-switching probabilities react more sensitively to individual obser-
vations than with a large p. It may hence be useful to also try to decrease the autoregressive
order rather than just increase it.

In addition to comparing model adequacy (or forecasting accuracy, for example), information
criteria can be utilized in the selection of the GSMAR model. uGMAR calculates the Akaike
(AIC), Hannan-Quinn (HQIC), and Schwarz-Bayesian (BIC) information criteria. The values
of the information criteria are not directly comparable for models with different autoregressive
orders if estimation is based on the conditional log-likelihood function, as the numbers of
observations used in estimation are different due to the different number of initial values.
With the conditional log-likelihood function, the values of the information criteria can be
divided by the number of observations used in the estimation (that is, the length of the series
minus p) to obtain more comparable statistics. However, as the conditional estimation with
each order p is based on slightly different observations, the comparison should be done with
caution. The exact log-likelihood function, in contrast, employs the full series in estimation
and thereby yields comparable values of information criteria for models with different orders
p.

3.4. Examples of unconstrained estimation

In this section, we demonstrate how to estimate GSMAR models with uGMAR and provide
several examples in order to illustrate various frequently occurring situations. In addition to
the ordinary estimation, we particularly show how a GSMAR model can be built based on a
local-only maximum point when the ML estimate seems unreasonable (see Appendix A). We
also consider the estimation of the appropriate G-StMAR model when the estimated StMAR
model contains overly large degrees of freedom estimates (see Virolainen 2022, Section 4).

In uGMAR, the GSMAR models are deĄned as class gsmar S3 objects, which can be created
with given parameter values using the constructor function GSMAR (see Section 5) or by us-
ing the estimation function fitGSMAR, which estimates the parameters and then builds the
model. For estimation, fitGSMAR needs to be supplied with a univariate time series and the
arguments specifying the model. The necessary arguments for specifying the model include
the autoregressive order p, the number of mixture components M, and model, which should
be either "GMAR", "StMAR", or "G-StMAR". For GMAR and StMAR models, the argument
M is a positive integer, whereas for the G-StMAR model it is a length two numeric vector
specifying the number of GMAR type regimes in the Ąrst element and the number of StMAR
type regimes in the second.

Additional arguments may be supplied to fitGSMAR in order to specify, for example, whether
the exact log-likelihood function should be used instead of the conditional one (conditional),
whether the model should be parametrized with the intercepts φm,0 or the regimewise uncon-
ditional means µm (parametrization), how many estimation rounds should be performed
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(ncalls), and how many central processing unit (CPU) cores should be used in the estima-
tion (ncores). Some of the estimation rounds may end up in local-only maximum points
or saddle points, but reliability of the estimation results can be improved by increasing the
number of estimation rounds. A large number of estimation rounds may be required partic-
ularly when the number of mixture components is large, as the surface of the log-likelihood
function becomes increasingly more challenging. It is also possible to adjust the settings of
the genetic algorithm that is used to Ąnd the starting values. The available options are listed
in the documentation of the function GAfit to which the arguments adjusting the settings
will be passed.

Section 3.3 concluded that a StMAR model with autoregressive order p = 4 and M = 2
mixture components seems like a reasonable candidate for modeling the monthly interest
rate spread M10Y1Y. The following code Ąts this model to the series using the conditional log-
likelihood function and performing 12 estimation rounds with eight CPU cores. The argument
seeds supplies the seeds that initialize the random number generator at the beginning of each
call to the genetic algorithm, thereby yielding reproducible results.

R> fit42t <- fitGSMAR(M10Y1Y, p = 4, M = 2, model = "StMAR",

+ conditional = TRUE, ncalls = 12, ncores = 8, seeds = 4:15)

Using 8 cores for 12 estimation rounds...

Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=11s

Results from the genetic algorithm:

The lowest loglik: 143.403

The mean loglik: 159.237

The largest loglik: 172.344

Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=02s

Results from the variable metric algorithm:

The lowest loglik: 167.572

The mean loglik: 179.117

The largest loglik: 182.353

Finished!

Warning message:

In warn_dfs(p = p, M = M, params = params, model = model) :

The model contains overly large degrees of freedom parameter values.

Consider switching to a G-StMAR model by setting the corresponding regimes

to be GMAR type with the function 'stmar_to_gstmar'.

The progression of the estimation process is reported with a progress bar giving an estimate of
the remaining estimation time. Also statistics on the spread of the log-likelihoods are printed
after each estimation phase. The progress bars are generated during parallel computing with
the package pbapply (Solymos and Zawadzki 2020).

The function throws a warning in the above example, because the model contains at least
one very large degrees of freedom parameter estimate. Such estimates are warned about,
because very large degrees of freedom parameters are redundant in the model and their weak
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identiĄcation might lead to numerical problems (Virolainen 2022, Section 4). SpeciĄcally,
overly large degrees of freedom parameter estimates may induce a nearly numerically singular
Hessian matrix of the log-likelihood function when evaluated at the estimate, making the
approximate standard errors and KalliovirtaŠs (2012) quantile residual tests often unavailable.

The estimates can be examined with the print method:

R> fit42t

Model:

StMAR, p = 4, M = 2, #parameters = 15, #observations = 468,

conditional, intercept parametrization, not restricted, no constraints.

Regime 1

Mix weight: 0.81

Reg mean: 1.87

Var param: 0.04

Df param: 9.75

y = [0.06] + [1.28]y.1 + [-0.36]y.2 + [0.20]y.3 + [-0.15]y.4 + [sigma_mt]eps

Regime 2

Mix weight: 0.19

Reg mean: 0.55

Var param: 0.01

Df param: 9348.94

y = [0.04] + [1.34]y.1 + [-0.59]y.2 + [0.54]y.3 + [-0.36]y.4 + [sigma_mt]eps

The parameter estimates are reported for each mixture component separately so that the
estimates can be easily interpreted. Each regimeŠs autoregressive formula is presented in the
form

yt = φm,0 + φm,1yt−1 + ... + φm,pyt−p + σm,tεm,t. (10)

The other statistics are listed above the formula, including the mixing weight pameter αm,
the unconditional mean µm, the variance parameter σ2

m, and the degrees freedom parameter
νm. For GMAR type regimes (if any), σm,t = σm so the estimate of the variance parameter
σ2

m is reported directly in the autoregressive formula.

The above printout shows that the second regimeŠs degrees of freedom parameter estimate
is very large, which might induce numerical problems. However, since a StMAR model with
some degrees of freedom parameters tending to inĄnity coincides with the G-StMAR model
with the corresponding regimes switched to GMAR type, one may avoid the problems by
switching to the appropriate G-StMAR model (Virolainen 2022, Section 4). Switching to
the appropriate G-StMAR model is recommended also because it removes the redundant de-
grees of freedom parameters from the model, thereby reducing its complexity. The function
stmar_to_gstmar does this switch automatically by Ąrst removing the large degrees of free-
dom parameters and then estimating the G-StMAR model with a variable metric algorithm
(Nash 1990, algorithm 21) using the induced parameter vector as the initial value.
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To exemplify, the following code switches all the regimes of the StMAR model fit42t with
a degrees of freedom parameter estimate larger than 100 to GMAR type, and then estimates
the corresponding G-StMAR model.

R> fit42gs <- stmar_to_gstmar(fit42t, maxdf = 100)

We use the summary method to obtain a more detailed printout of the estimated the G-StMAR
model:

R> summary(fit42gs, digits = 2)

Model:

G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 14, #observations = 468,

conditional, intercept parametrization, not restricted, no constraints.

log-likelihood: 182.35, AIC: -336.71, HQIC: -313.89, BIC: -278.75

Regime 1 (GMAR type)

Moduli of AR poly roots: 1.16, 1.45, 1.45, 1.16

Mix weight: 0.19 (0.09)

Reg mean: 0.55

Reg var: 0.14

y = [0.04] + [1.34]y.1 + [-0.59]y.2 + [0.54]y.3 + [-0.36]y.4 + sqrt[0.01]eps

(0.01) (0.10) (0.20) (0.19) (0.12) (0.00)

Regime 2 (StMAR type)

Moduli of AR poly roots: 1.07, 2.02, 2.02, 1.51

Mix weight: 0.81

Reg mean: 1.87

Var param: 0.04 (0.01)

Df param: 9.75 (4.17)

Reg var: 1.01

y = [0.06] + [1.28]y.1 + [-0.36]y.2 + [0.20]y.3 + [-0.15]y.4 + [sigma_mt]eps

(0.02) (0.05) (0.09) (0.09) (0.06)

Process mean: 1.62

Process var: 1.11

First p autocors: 0.98 0.96 0.93 0.89

In the G-StMAR model, estimates for GMAR type regimes are reported before StMAR type
regimes, in a decreasing order according to the mixing weight parameter estimates. As shown
above, the model fit42gs incorporates one GMAR type regime and one StMAR type regime.
The mixing weight parameter estimate 0.19 of the GMAR type regime indicates that in the
long run, roughly 19% of the observations are generated from this regime. Estimates of
the unconditional mean and variance (0.55 and 0.14, respectively) are visibly smaller in the
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GMAR type regime than in the StMAR type regime (1.87 and 1.01, respectively). Hence,
the GMAR type seems to mostly account for the periods when the series takes smaller values
and is less volatile, while the StMAR type regime covers the more volatile periods of larger
values. Interestingly, the AR parameters are somewhat similar in both regimes, implying that
it could be appropriate to restrict them to be identical (this will be tested in Section 3.7).

Approximate standard errors are given in parentheses under or next to the related estimates.
Note that the last mixing weight parameter estimate does not have an approximate standard
error because it is not parametrized. Likewise, there is no standard error for the intercepts
if mean parametrization is used (by setting parametrization = "mean" in fitGSMAR) and
vice versa. In order to obtain standard errors for the regimewise unconditional means or
intercepts, one can easily swap between the mean and intercept parametrizations with the
function swap_parametrization.

Missing values are reported when uGMAR is not able to calculate the standard error. This
typically happens either because there is an overly large degrees of freedom parameter esti-
mate in the model (as discussed above) or because the estimation algorithm did not stop a
local maximum. In the latter case, the observed information matrix is not necessarily positive
deĄnite, implying that the diagonal entries of its inverse might not all be positive. Conse-
quently, when extracting the approximate standard errors by taking the square roots of the
diagonal entries from the inverse of the observed information matrix, the possibly present
negative entries will lead to missing values.

Section 3.5 discusses how to evaluate with uGMAR whether the estimate is a local maximum
(and how to improve the reliability of it being the global maximum). If the estimate is not a
local maximum, one may try running more iterations of the variable metric algorithm with the
function iterate_more. However, often when the algorithm does not stop a local maximum,
it stopped to an unreasonable point very near the boundary of parameter space. As will be
discussed next, in such a case it might be more appropriate to consider an alternative estimate
that is clearly in the interior of the parameter space.

Other statistics reported in the summary printout include the log-likelihood and values of the
information criteria, the Ąrst and second moments of the process, as well as regime speciĄc
unconditional means, unconditional variances, and moduli of the roots of the AR polynomials
1−
∑p

i=1 φm,iz
i, m = 1, ..., M . If some of the moduli are very close to one, the related estimates

are near the boundary of the stationarity region. We demonstrate in Appendix A that when
such solutions are accompanied with a very small variance parameter estimate, they might not
be reasonable estimates and maximize the log-likelihood function for a technical reason only.
Consequently, the estimate related to the next-largest local maximum could be considered.

This is possible in uGMAR, because the estimation function fitGSMAR stores the estimates
from all the estimation rounds so that a GSMAR model can be built based on any one of
them, most conveniently with the function alt_gsmar. The desired estimation round can
be speciĄed either with the argument which_round or which_largest. The former speciĄes
the round in the estimation order, whereas the latter speciĄes it in a decreasing order of the
log-likelihoods.

To give an example of a case where the estimates are very close the boundary of the station-
arity region, we estimate the G-StMAR model directly with the following code.

R> fit42gs2 <- fitGSMAR(M10Y1Y, p = 4, M = c(1, 1), model = "G-StMAR",

+ conditional = TRUE, ncalls = 16, ncores = 8, seeds = 72:87)
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Using 8 cores for 16 estimation rounds...

Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=12s

Results from the genetic algorithm:

The lowest loglik: 140.441

The mean loglik: 155.421

The largest loglik: 167.858

Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=02s

Results from the variable metric algorithm:

The lowest loglik: 152.034

The mean loglik: 174.794

The largest loglik: 192.43

Finished!

Warning message:

In warn_ar_roots(ret) :

Regime 1 has near-unit-roots! Consider building a model from the next-

largest local maximum with the function 'alt_gsmar' by adjusting its

argument 'which_largest'.

The function throws a warning, because the largest found maximum point incorporates a
regime that is very close to the boundary of the stationarity region, indicating that the
estimate might be inappropriate. We examine the estimates with the summary method:

R> summary(fit42gs2, digits = 2)

Model:

G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 14, #observations = 468,

conditional, intercept parametrization, not restricted, no constraints.

log-likelihood: 192.43, AIC: -356.86, HQIC: -334.05, BIC: -298.90

Regime 1 (GMAR type)

Moduli of AR poly roots: 1.00, 1.00, 1.00, 1.00

Mix weight: 0.02 (0.03)

Reg mean: 2.65

Reg var: 0.13

y = [3.77] + [1.19]y.1 + [-1.81]y.2 + [1.19]y.3 + [-1.00]y.4 + sqrt[0.00]eps

(0.02) (0.01) (0.01) (0.01) (0.00) (0.00)

Regime 2 (StMAR type)

Moduli of AR poly roots: 1.04, 1.93, 1.93, 1.48

Mix weight: 0.98

Reg mean: 0.89

Var param: 0.04 (0.01)

Df param: 4.98 (1.67)
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Reg var: 1.75

y = [0.02] + [1.30]y.1 + [-0.36]y.2 + [0.21]y.3 + [-0.17]y.4 + [sigma_mt]eps

(0.01) (0.05) (0.08) (0.08) (0.05)

Process mean: 0.92

Process var: 1.78

First p autocors: 0.99 0.97 0.95 0.93

The summary statistics reveal that there are four near-unit-roots in the GMAR type regime
and the variance parameter estimate is very small. Such estimates often occur when there
are several regimes in the model and the estimation algorithm is ran a large number of times.

If one suspects that the estimate is inappropriate, it is easy to build a model based on the
second-largest maximum point that was found in the estimation procedure. Below, the Ąrst
line of the code builds the model based on the second-largest maximum point, and the second
line calls the summary method to produce a detailed printout of the model.

R> fit42gs3 <- alt_gsmar(fit42gs2, which_largest = 2)

R> summary(fit42gs3, digits = 2)

Model:

G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 14, #observations = 468,

conditional, intercept parametrization, not restricted, no constraints.

log-likelihood: 182.35, AIC: -336.71, HQIC: -313.89, BIC: -278.75

Regime 1 (GMAR type)

Moduli of AR poly roots: 1.16, 1.45, 1.45, 1.16

Mix weight: 0.19 (0.09)

Reg mean: 0.55

Reg var: 0.14

y = [0.04] + [1.34]y.1 + [-0.59]y.2 + [0.54]y.3 + [-0.36]y.4 + sqrt[0.01]eps

(0.01) (0.10) (0.20) (0.19) (0.12) (0.00)

Regime 2 (StMAR type)

Moduli of AR poly roots: 1.07, 2.02, 2.02, 1.51

Mix weight: 0.81

Reg mean: 1.87

Var param: 0.04 (0.01)

Df param: 9.75 (4.14)

Reg var: 1.01

y = [0.06] + [1.28]y.1 + [-0.36]y.2 + [0.20]y.3 + [-0.15]y.4 + [sigma_mt]eps

(0.02) (0.05) (0.09) (0.09) (0.06)

Process mean: 1.62
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Process var: 1.11

First p autocors: 0.98 0.96 0.93 0.89

The above printout shows that the estimates related to the second-largest local maximum are
the same as of the model fit42gs (which was estimated based on a StMAR model with a
very large degrees of freedom parameter estimate) and that they are clearly inside the station-
arity region for all regimes. If also the second-largest maximum point seems unreasonable,
a GSMAR model can be built based on the next-largest maximum point by adjusting the
argument which_largest in the function alt_gsmar accordingly.

3.5. Further examination of the estimates

In addition to examining the summary printout, it is often useful to visualize the model
by plotting the mixing weights together with the time series and the modelŠs (marginal)
stationary density together with a kernel density estimate of the time series. That is exactly
what the plot method for GSMAR models does. For instance, the following command creates
Figure 2:

R> plot(fit42gs)

As Figure 2 (the top and bottom left panels) shows, the Ąrst regime prevails when the spread
takes small values, while the second regime mainly dominates when the spread takes large
values. The graph of the modelŠs marginal stationary density (the right panel), on the other
hand, shows that the two regimes capture the two modes in the marginal distribution of the
spread. The hump shape in the right tail of the kernel density estimate is not explained by
the mixture of the two distributions, but a third regime could be added for the purpose (for
brevity, we do not study the three regime model further).

It is also sometimes interesting to examine the time series of (one-step) conditional means
and variances of the process along with the time series the model was Ątted to. This can be
done conveniently with the function cond_moment_plot, where the argument which_moment

should be speciĄed with "mean" or "variance" accordingly. In addition to the conditional
moment of the process, cond_moment_plot also displays the conditional means or variances of
the regimes multiplied by the mixing weights. Note, however, that the conditional variance of
the process is not generally the same as the weighted sum of regimewise conditional variances,
as it includes a component that encapsulates heteroskedasticity caused by variation in the
conditional mean (see Virolainen 2022, Equation (2.19)).

The variable metric algorithm employed in the Ąnal estimation does not necessarily stop at
a local maximum point. The algorithm might also stop at a saddle point or near a local
maximum, when the algorithm is not able to increase the log-likelihood, or at any point,
when the maximum number of iterations has been reached. In the latter case, the estimation
function throws a warning, but saddle points and inaccurate estimates need to be detected
by the researcher.

It is well known that in a local maximum point, the gradient of the log-likelihood function
is zero, and the eigenvalues of the Hessian matrix are all negative. In a local minimum, the
eigenvalues of the Hessian matrix are all positive, whereas in a saddle point, some of them
are positive and some negative. Nearly numerically singular Hessian matrices occur when
the surface of the log-likelihood function is very Ćat about the estimate in some directions.
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Figure 2: The Ągure produced by the command plot(fit42gs). On the top left, the monthly
spread between the 10-year and 1-year Treasury constant maturity rates, covering the period
from 1982 January to 2020 December. On the bottom left, the estimated mixing weights of
the G-StMAR model (fit42gs) Ątted to the interest rate spread (blue dashed line for the
Ąrst regime and red dashed line for the second regime). On the right, the one-dimensional
marginal stationary density of the estimated G-StMAR model (grey dashed line) along with
a kernel density estimate of the spread (black solid line) and marginal stationary densities of
the regimes multiplied by the mixing weight parameter estimates (blue and red dotted lines).

Figure 3: The Ągure produced by the command profile_logliks(fit42gs). Graphs of
the proĄle log-likelihood functions of the estimated G-StMAR model fit42gs with the red
vertical lines pointing the estimates.
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This particularly happens when the model contains overly large degrees of freedom parameter
estimates or the mixing weights αm,t are estimated close to zero for all t = 1, ..., T for some
regime m.

uGMAR provides several functions for evaluating whether the estimate is a local maximum
point. The function get_foc returns the (numerically approximated) gradient of the log-
likelihood function evaluated at the estimate, and the function get_soc returns eigenvalues of
the (numerically approximated) Hessian matrix of the log-likelihood function evaluated at the
estimate. The numerical derivatives are calculated using a central difference approximation

∂L(θ)

∂θi
≈

f(θ + h(i)) − f(θ − h(i))

2h
, h > 0, (11)

where θi is the ith element of θ and h(i) = (0, ..., 0, h, 0, ..., 0) contains h as its ith element. By
default, the difference h = 6 · 10−6 is used for all parameters except for overly large degrees of
freedom parameters, whose partial derivatives are approximated using larger differences. The
difference is increased for large degrees of freedom parameters, because the limited precision
of the Ćoat point presentation induces artiĄcially rugged surfaces to the their proĄle log-
likelihood functions, and the increased differences diminish the related numerical error. On
the other hand, as the surface of the proĄle log-likelihood function is very Ćat about a large
degrees of freedom parameter estimate, large differences work well for the approximation.

For example, the following code calculates the Ąrst order condition for the G-StMAR model
fit42gs:

R> get_foc(fit42gs)

[1] 0.0576396128 -0.0364233988 -0.0242331476 -0.0144442609 -0.0161249574

[6] 0.0411603528 -0.0171471584 -0.0490156277 -0.0659635759 -0.0587742714

[11] -0.0635655297 0.0686981920 -0.0374653647 0.0002778317

and the following code calculates the second order condition:

R> get_soc(fit42gs)

[1] -5.753554e-02 -1.354508e+01 -4.394382e+01 -6.467642e+01 -1.204519e+02

[6] -1.672692e+02 -2.619181e+02 -8.869383e+02 -2.045380e+03 -4.862797e+03

[11] -4.355348e+04 -5.455077e+04 -2.727695e+05 -5.564824e+05

All eigenvalues of the Hessian matrix are negative, which points to a local maximum, but the
gradient of the log-likelihood function seems to somewhat deviate from zero. The gradient
might be inaccurate, because it is based on a numerical approximation. It is also possible
that the estimate is inaccurate, because it is based on approximative numerical estimation,
and the estimates are therefore not expected to be exactly accurate. Whether the estimate is
a local maximum point with accuracy that is reasonable enough, can be evaluated by plotting
the graphs of the proĄle log-likelihood functions about the estimate. In uGMAR, this can be
done conveniently with the function profile_logliks.

The exemplify, the following command plots the graphs of proĄle log-likelihood functions of
the estimated G-StMAR model fit42gs:
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R> profile_logliks(fit42gs, scale = 0.02, precision = 200)

The output is displayed in Figure 3, showing that the estimateŠs accuracy is reasonable,
as changing any individual parameter value marginally would not visibly increase the log-
likelihood. The argument scale can be adjusted to shorten or lengthen the interval shown
in the horizontal axis. If one zooms in enough by setting scale to a very small number, it
can be seen that the estimate is not exactly at the local maximum, but it is so close that
moving there would not increase the log-likelihood notably. The argument precision can be
adjusted to increase the number of points the graph is based on. For faster plotting, it can
be decreased, and for more precision, it can be increased.

We have discussed tools that can be utilized to evaluate whether the found estimate is a local
maximum with a reasonable accuracy. It is, however, more difficult to establish that the
estimate is the global maximum. With uGMAR, the best way to increase the reliability that
the found estimate is the global maximum, is to run more estimation rounds by adjusting the
argument ncalls of the estimation function fitGSMAR. When a large number of estimation
rounds is run (and M > 1), fitGSMAR often Ąnds peculiar near-the-boundary estimates that
have extremely spiky proĄle log-likelihood functions for some parameters and are thus difficult
to Ąnd (see Appendix A). Therefore, it seems plausible that fitGSMAR also Ąnds a reasonable
ML estimate with a good reliability.

3.6. Examples of constrained estimation

Alternatively to the unconstrained estimation, one may impose linear constraints on the au-
toregressive (AR) parameters of the model; that is, on φm,1, ..., φm,p, m = 1, ..., M . uGMAR

deploys two types of constraints: the AR parameters can be restricted to be the same for all
regimes and linear constraints can be applied to each regime separately. In order to impose
the former type of constraints, the estimation function simply needs to be supplied with the
argument restricted = TRUE.

For instance, the G-StMAR, p = 4, M1 = 1, M2 = 1 model (fit42gs) estimated in Section 3.4
obtained somewhat similar estimates for the AR parameters in both regimes. The following
code estimates a version of this model such that the AR parameters are restricted to be the
same in both regimes. Note that this model still allows for shifts in the conditional (and
unconditional) mean, as the intercept parameters can vary across the regimes. The argument
print_res = FALSE tells fitGSMAR not to the print the spread of the log-likelihoods obtained
from each phase of estimation.

R> fit42gsr <- fitGSMAR(M10Y1Y, p = 4, M = c(1, 1), model = "G-StMAR",

+ restricted = TRUE, ncalls = 12, ncores = 8, seeds = 1:12,

+ print_res = FALSE)

Using 8 cores for 12 estimation rounds...

Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=07s

Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=01s

Finished!
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The summary printout of the model shows the AR parameter estimates are the same in both
regimes:

R> summary(fit42gsr)

Model:

G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 10, #observations = 468,

conditional, intercept parametrization, AR parameters restricted, no

constraints.

log-likelihood: 180.02, AIC: -340.04, HQIC: -323.74, BIC: -298.64

Regime 1 (GMAR type)

Moduli of AR poly roots: 1.21, 1.83, 1.83, 1.21

Mix weight: 0.51 (0.17)

Reg mean: 2.13

Reg var: 0.46

y = [0.13] + [1.29]y.1 + [-0.40]y.2 + [0.25]y.3 + [-0.20]y.4 + sqrt[0.03]eps

(0.03) (0.05) (0.08) (0.08) (0.05) (0.00)

Regime 2 (StMAR type)

Moduli of AR poly roots: 1.21, 1.83, 1.83, 1.21

Mix weight: 0.49

Reg mean: 0.54

Var param: 0.05 (0.06)

Df param: 2.76 (1.18)

Reg var: 0.83

y = [0.03] + [1.29]y.1 + [-0.40]y.2 + [0.25]y.3 + [-0.20]y.4 + [sigma_mt]eps

(0.01) (0.05) (0.08) (0.08) (0.05)

Process mean: 1.35

Process var: 1.27

First p autocors: 0.98 0.95 0.91 0.87

In constrast to the unrestricted model, this model has larger regimewise unconditonal mean
in the GMAR type regime than in the StMAR type regime. According to the unconditional
regimewise variances, the StMAR type regime is the more volatilite regime in this model as
well.

Whether imposing the constraints is reasonable, can be evaluated by employing a statisti-
cal test, comparing values of the information criteria, or examining the model adequacy, for
example. As the summary printout shows, the information criteria values all decreased as
opposed to the unrestricted model, implying that the constraints could be appropriate. Dis-
cussion on testing the constraints is postponed to Section 3.7, whereas diagnostics checks for
evaluating the model adequacy are covered in Section 4.
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The other type constraints in uGMAR are of the form

ϕm = Cmψm, m = 1, ..., M, (12)

where Cm is a known (p × qm) constraint matrix with full column rank, ψm is a (qm ×
1) parameter vector, and ϕm = (φm,1, ..., φm,p) contains the AR coefficients of the mth
regime. In order to apply the constraints, the estimation function should be supplied with
the argument constraints containing a list of the constraint matrices Cm, m = 1, ..., M .

To exemplify, consider a GMAR model with autoregressive order p = 3 and M = 2 mixture
components. To constrain the third AR coefficient of the second regime (φ2,3) to zero but
leaving the Ąrst regime unconstrained, we deploy the following list of constraint matrices:

R> C_list <- list(diag(3), matrix(c(1, 0, 0, 0, 1, 0), nrow = 3))

R> C_list

[[1]]

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

[[2]]

[,1] [,2]

[1,] 1 0

[2,] 0 1

[3,] 0 0

After setting up the constraints, the constrained model can be estimated as follows:

R> fit32c <- fitGSMAR(M10Y1Y, p = 3, M = 2, model = "GMAR",

+ constraints = C_list, ncalls = 12, ncores = 8, seeds = 1:12,

+ print_res = FALSE)

Using 8 cores for 12 estimation rounds...

Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=05s

Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=01s

Finished!

Printout of the model shows that the third AR parameter estimate of the second regime is
zero:

R> fit32c

Model:

GMAR, p = 3, M = 2, #parameters = 10, #observations = 468,
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conditional, intercept parametrization, not restricted, linear constraints

imposed.

Regime 1

Mix weight: 0.56

Reg mean: 1.26

y = [0.02] + [1.25]y.1 + [-0.19]y.2 + [-0.07]y.3 + sqrt[0.01]eps

Regime 2

Mix weight: 0.44

Reg mean: 1.72

y = [0.07] + [1.27]y.1 + [-0.32]y.2 + [0.00]y.3 + sqrt[0.05]eps

Notice that even when the pth AR coefficient is restricted to zero, the pth lag of that regime
is accounted for in the mixing weights (6) and in the case of a StMAR type regime also in
the conditional variance (3).

If both types of constraints are applied at the same time, only a single constraint matrix
should be supplied (not in a list). Consider a GSMAR model with p = 2 and M = 2, for
example, and suppose the AR coefficients should be restricted to be the same in both regimes
and the second AR coefficient (φm,2) should be constrained to be the negative of the Ąrst
coefficient (φm,1). Then, the estimation function should be supplied with the arguments
restricted = TRUE and constraints = matrix(c(1, -1), nrow = 2). As demonstrated
above, uGMARŠs implementation for applying linear constraints is not the most general one,
but it makes applying some of the most typical constraints convenient, as the constraint
matrices remain small.

3.7. Testing parameter constraints

One way to asses the validity of the imposed constraints is to compare the values of informa-
tion criteria of the constrained and unconstrained models. uGMAR, however, also provides
functions for testing the constraints with the likelihood ratio test and Wald test, which are
applicable as the ML estimator of a GSMAR model has the conventional asymptotic distri-
bution (as long as the model is correctly speciĄed and one is willing to assume the validity
of the required unveriĄed assumptions, see Kalliovirta et al. 2015, pp. 254-255, Meitz et al.

2023, Theorem 3, and Virolainen 2022, Theorem 2). For a discussion on the likelihood ratio
and Wald tests, see Buse (1982) and the references therein, for example.

The likelihood ratio test considers the null hypothesis that the true parameter value θ0 satisĄes
some constraints imposed on these parameters (such that the constrained parameter space
is a subset of the parameter space, which is presented in Virolainen 2022, Section 2.2 for
the GSMAR models). Denoting by L̂U and L̂C the (maximized) log-likelihoods based on the
unconstrained and constrained ML estimates, respectively, the test statistic takes the form

LR = 2(L̂U − L̂C). (13)

Under the null, the test statistic is asymptotically χ2-distributed with the degrees of freedom
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given by the difference in the dimensions of the unconstrained and constrained parameter
spaces.

With uGMAR, the likelihood ratio test can be calculated with the function LR_test, which
takes the unconstrained model (a class gsmar object) as its Ąrst argument and the constrained
model as the second argument. For instance, in Section 3.6 we estimated a G-StMAR, p = 4,
M1 = 1, M2 = 1 model such that the AR parameters are restricted to be equal in both regimes
(the model fit42gsr), i.e., ϕ1 = ϕ2. The following code tests those constraints against the
unconstrained model fit42gs with the likelihood ratio test and prints the results.

R> LR_test(fit42gs, fit42gsr)

Likelihood ratio test

data: fit42gs and fit42gsr

LR = 4.6695, df = 4, p-value = 0.3229

alternative hypothesis: the true parameter does not satisfy the constraints

imposed in fit42gsr

The large p-value indicates that we cannot reject the constraints at any conventional level
of signiĄcance, and it might thereby be reasonable to consider the constrained model if it is
found adequate.

uGMAR implements the Wald test of the null hypothesis

Aθ0 = c, (14)

where A is a (k × d) matrix with full row rank, c is a (k × 1) vector, θ0 is the true parameter
value, d is the dimension of the parameter space, and k is the number of constraints. The
Wald test statistic takes the form

W = (Aθ̂ − c)′[AJ (θ̂)−1A′]−1(Aθ̂ − c), (15)

where J (θ̂) is the observed information matrix evaluated at the ML estimate θ̂. Under the
null, the test statistic is asymptotically χ2-distributed with k degrees of freedom (which is
the difference in dimensions of the constrained and unconstrained parameter spaces).

With uGMAR, the Wald test can be calculated with function Wald_test, which takes the
estimated unconstrained model (as a class gsmar object) as the Ąrst argument, the matrix
A as the second argument, and the vector c as the third argument. To exemplify, we test
whether the AR parameters and intercepts are identical in both regimes of the G-StMAR,
p = 4, M1 = 1, M2 = 1 model, i.e., the null hypothesis (φ1,0,ϕ1) = (φ2,0,ϕ2). The (d × 1)
parameter vector θ (which is presented at the end of Section 2.2 and again in Section 5)
contains the intercept and AR parameters of the Ąrst regime in the entries 1, ..., 5 and the
intercept and AR parameters of the second regime in the entries 7, ..., 11. The appropriate
matrix A and vector c that state the hypothesis are set in the Ąrst two lines of the following
code, and the third line calculates the test.

R> c <- rep(0, times = 5)

R> A <- cbind(diag(5), c, -diag(5), c, c, c)

Wald_test(fit42gs, A = A, c = c)
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Wald test

data: fit42gs, A, c

W = 15.107, df = 5, p-value = 0.009916

alternative hypothesis: the true parameter theta does not satisfy

A%*%theta = c

As the above printout shows, the p-value is small enough to reject the null at the 1% level
of signiĄcance, even though the null hypothesis that the AR parameters are equal in both
regimes could not be rejected by the likelihood ratio test. Using the model fit42gsr to
calculate a Wald test, that tests equality of the intercepts conditional on the constraint that
the AR parameters are identical in both regimes, produces the p-value 0.00025 (not shown for
brevity). Thus, the intercepts are not likely equal if the AR parameters are identical in both
regimes.3 As is demonstrated above, the Wald test has the beneĄt that it does not require
estimation of the constrained model, and it is, therefore, not limited to the type of constraints
uGMAR accommodates. The likelihood ratio test, on the other hand, is more conveniently
calculated once the constrained model has been estimated.

Note that the standard tests are not applicable if the number of GMAR or StMAR type
regimes is chosen too large, as then some of the parameters are not identiĄed, causing the
result of the asymptotic normality of the ML estimator to break down. This particularly
happens when one tests for the number of regimes in the model, as under the null some
of the regimes are reduced from the model4 (see the related discussion in Kalliovirta et al.

2015, Section 3.3.2). Similar caution applies for testing whether a regime is of the GMAR
type against the alternative that it is of the StMAR type. Then νm = ∞ under the null
for the regime m to be tested, which violates the assumption that the parameter value is in
the interior of a compact subset of the parameter space (see Virolainen 2022, Theorem 2 and
Assumption 1).

4. Quantile residual based model diagnostics

In the GSMAR models, the empirical counterparts of the error terms εm,t in (1) cannot be
calculated, because the regime that generated each observation is unknown, making the con-
ventional residual based diagnostics unavailable. Therefore, uGMAR utilizes so called quantile

residuals, which are suitable for evaluating adequacy of the GSMAR models. Deploying the
framework presented in Kalliovirta (2012), quantile residuals are deĄned as

Rt = Φ−1(F (yt♣Ft−1)), t = 1, 2, ..., T, (16)

3The test results do not, however, allow to infer that the process is likely bimodal, because GSMAR processes
incorporating component processes with distinct means can have unimodal skewed marginal distributions.
Moreover, one cannot infer about the (in)equality of the means of the component processes based on the
(in)equality of the intercepts if the AR parameters are allowed vary freely. In particular, our null hypothesis
(φ1,0,ϕ

1
) = (φ2,0,ϕ

2
) does not test whether the component processes have identical means, as identical means

can be obtained also with various other constraints. Identicality of the means can, however, be tested directly
by switching to the mean parametrization (with the function swap_parametrization) and calculating the
appropriate Wald test.

4Meitz and Saikkonen (2021) have, however, recently developed such tests for mixture models with Gaussian
conditional densities.



26 A Family of Mixture Autoregressive Models in R

where Φ−1(·) is the standard normal quantile function and F (·♣Ft−1) is the conditional cumu-
lative distribution function of the considered GSMAR process (conditional on the previous
observations). Closed form expressions for the quantile residuals of the GSMAR processes
are derived in Appendix B.

The empirical counterparts of the quantile residuals are calculated by using the parameter es-
timate and the observed data in (16). For a correctly speciĄed GSMAR model, the empirical
counterparts of the quantile residuals based on the ML estimator are asymptotically inde-
pendent with standard normal distributions (Kalliovirta 2012, Lemma 2.1). Hence, quantile
residuals can be used for graphical analysis similarly to the conventional Pearson residuals.

In uGMAR, quantile residuals can be analyzed graphically with the function diagnostic_plot,
which plots the quantile residual time series, normal quantile-quantile plot, and sample au-
tocorrelation functions of the quantile residuals and squared quantile residuals. If one sets
plot_indstats = TRUE in the function arguments, diagnostic_plot also plots the standard-
ized individual statistics discussed in Kalliovirta (2012, pp. 369-370) with their approximate
95% critical bounds.

The individual statistics, which test for remaining autocorrelation or heteroskestacity in spe-
ciĄc lags, can be calculated either based on the observed data or based on the simulation
procedure proposed by Kalliovirta (2012). In the simulation procedure, the individual statis-
ticsŠ approximate standard errors are based on a sample simulated from the estimated process.
According to KalliovirtaŠs (2012) Monte Carlo study, the simulation procedure may improve
size properties of the related tests, but it makes calculation of the statistics computationally
more demanding - particularly if the simulated sample is very large.

The likelihood ratio test accepted hypothesis that the AR coefficients of the G-StMAR p = 4,
M1 = 1, M2 = 2 model are identical in both regimes (see Section 3.7). In order to evalu-
ate whether this constrained model (fit42gsr) can adequately capture the autocorrelation
structure, conditional heteroskedasticity, and distribution of the series, we create a diagnostic
plot with the following code. We include KalliovirtaŠs (2012) individual statistic to the Ągure
based on the observed data and calculated for the Ąrst 20 lags.

R> diagnostic_plot(fit42gsr, nlags = 20, plot_indstats = TRUE)

The resulting plot is presented in Figure 4. The quantile residual time series (the top left
panel) has a period when it takes several consecutive negative values (roughly the observations
260, ..., 300 with also some positive observations in between), but other than that it seems to
somewhat resemble an IID normal process. The normal quantile-quantile plot (the top right
panel) shows that the quantile residualsŠ distribution has too fat right tail. This is possibly
due to the inability to explain the hump shape in the right tail of the seriesŠ distribution with
a mixture of one normal and one t-distribution, when the two modes are accounted for.

The sample autocorrelation function of the quantile residuals (the middle left panel) shows
that there are no particularly large autocorrelation coefficients in the lags 1, ..., 20. Moreover,
as all KalliovirtaŠs (2012) autocorrelation statistics fall inside the asymptotic 95% critical
bounds, the model seems to adequately describe the autocorrelation structure of the series.
The sample autocorrelation function of the squared quantile residuals (the middle right panel),
on the other hand, has a relatively large coefficient at the lag eight. KalliovirtaŠs (2012)
conditional heteroskedasticity statistics (the bottom right panel) fall outside the asymptotic
95% critical bounds at the lags four and six, but at the lag eight the statistic is inside
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Figure 4: Diagnostic plot for the Ątted model fit42gsr created using the function
diagnostic_plot. The quantile residual time series (top left), normal quantile-quantile
plot (top right), sample autocorrelation functions of the quantile residuals (middle left) and
squared quantile residuals (middle right), and the individual autocorrelation (bottom left)
and heteroskedasticity (bottom right) statistics discussed in Kalliovirta (2012, pp. 369-370).
The blue dashed lines in the sample autocorrelation Ągures are the 1.96T −1/2 lines denoting
95% critical bounds for IID-observations, whereas for KalliovirtaŠs (2012) individual statistics
they are the approximate 95% critical bounds.

the bounds. Overall, it appears that in addition to the distribution, the model might not
adequately explain the conditional heteroskedasticity of the series.

In order to employ the simulation procedure for calculating the individual statistics, one
needs to set the length of the simulated sample with the argument nsimu. If nsimu is not
larger than the length of the observed data, the statistics will be based on the observed
data. In addition to diagnostic_plot, quantile residuals can be graphically examined with
the function quantile_residual_plot, which plots the quantile residual time series and a
histogram.

Analyzing quantile residuals graphically gives an overview of the modelŠs adequacy, but it
is often appealing to also carry out a formal testing procedure. Kalliovirta (2012) proposes
three speciĄc tests for testing normality, autocorrelation, and conditional heteroskedasticity
of the quantile residuals. KalliovirtaŠs (2012) tests take into account the uncertainty caused
by estimation of the parameters and they are shown to perform well in a simulation study
(Kalliovirta 2012, Section 4).

In uGMAR, the quantile residual tests can be applied with the function quantile_residual_tests

whose arguments include the model and the numbers of lags to be included in the autocorre-
lation (lags_ac) and heteroskedasticity tests (lags_ch). Similarly to the individual statistics
discussed in the context of the diagnostic plot, the tests can be based either on the observed
data or on the simulation procedure. The simulation procedure can be deployed by setting
the argument nsimu to be larger than the data length.

The following code calculates the quantile residual tests for the restricted G-StMAR model
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fit42gsr by deploying the simulation procedure based on a simulated sample of length 10000
and taking into account 1, 3, 6, and 12 lags in the autocorrelation and heteroskedasticity tests.
By default, the lags for the heteroskedasticity tests are the same as for the autocorrelation
tests, so it is enough to set the autocorrelation test lags with the argument lags_ac.

R> set.seed(1)

R> qrtr <- quantile_residual_tests(fit42gsr, lags_ac = c(1, 3, 6, 12),

+ nsimu = 10000)

Normality test p-value: 0.018

Autocorrelation tests:

lags | p-value

1 | 0.849

3 | 0.084

6 | 0.488

12 | 0.213

Conditional heteroskedasticity tests:

lags | p-value

1 | 0.713

3 | 0.299

6 | 0.017

12 | 0.000

The test results reveal that the model does not seem to adequately capture the conditional
heteroskedasticity in the series when taking into account 12 lags. Also, the normality test and
the heteroskedasticity test with six lags pass only at 1% level of signiĄcance. The rest of the
tests, including all the autocorrelation tests pass at 5% level of signiĄcance, conĄrming our
Ąndings from examining the diagnostic plot: the model seem to adequately explain the auto-
correlation structure of the series but struggles in capturing the distribution and conditional
heteroskedasticity. Nevertheless, the inadequacies do not seem very serious.

Because the restricted model was found somewhat inadequate, we run the quantile residual
tests for the unrestricted model as well in order to evaluate whether it captures the statistical
properties of the series more adequately. The following code runs the same diagnostics tests
for the unrestricted model fit42gs.

R> set.seed(1)

R> qrt <- quantile_residual_tests(fit42gs, lags_ac = c(1, 3, 6, 12),

+ nsimu = 10000)

Normality test p-value: 0.087

Autocorrelation tests:

lags | p-value

1 | 0.475

3 | 0.020
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6 | 0.289

12 | 0.077

Conditional heteroskedasticity tests:

lags | p-value

1 | 0.579

3 | 0.137

6 | 0.002

12 | 0.000

As the p-values show, relaxing the restrictions improved the modelŠs capability to capture the
distribution of the series but according to the test results, the unrestricted model does not
explain conditional heteroskedasticity as well as the restricted one when taking into account
six lags (since the test now rejects at 1% level of signiĄcance). Also the autocorrelation
test with three lags only passes at 1% level of signiĄcance. It thereby appears that the
parsimonious restricted model could be more appropriate. Adding a third regime to the model
or trying a different autoregressive order could also be considered for potentially improving
the adequacy.

uGMAR often fails to calculate the quantile residual tests for GSMAR models with very
large degrees of freedom parameter estimates, but the problem can be avoided by switching
to the appropriate G-StMAR model with the function stmar_to_gstmar, which removes the
redundant degrees of freedom parameters (see Virolainen 2022, Section 4, and Section 3.4
of this paper). Calculation of the tests may also fail when the estimate is very close to the
boundary of the parameter space in which case it might be appropriate to consider an estimate
from the next-largest local maximum point of the log-likelihood function. To that end, the
function alt_gsmar can be used as demonstrated in Section 3.4 and in Appendix A.

5. Building a GSMAR model with speciĄc parameter values

The function GSMAR facilitates building GSMAR models without estimation, for instance, in
order to simulate observations from a GSMAR process with speciĄc parameter values. The
parameter vector (of length M(p + 3) + M2 − 1 for unconstrained models) has the form
θ = (ϑ1, ...,ϑM , α1, ..., αM−1,ν) where

ϑm = (φm,0, φm,1, ..., φm,p, σ2
m), m = 1, ..., M, and (17)

ν = (νM1+1, ..., νM ). (18)

In the GMAR model (when M1 = M), the vector ν is omitted, as the GMAR model does not
contain degrees of freedom parameters. For models with constraints on the autoregressive
parameters, the parameter vectors are expressed in a different way. For brevity, they are only
presented in the package documentation, because the hand-speciĄed parameter values can be
set to satisfy any constraints as is.

In addition to the parameter vector, GSMAR should be supplied with arguments p and M

specifying the order of the model similarly to the estimation function fitGSMAR discussed in
Sections 3.4 and 3.6. If one wishes to parametrize the model with the regimewise unconditional
means (µm) instead of the intercepts (φm,0), the argument parametrization should be set
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to "mean" in which case the intercept parameters φm,0 are replaced with µm in the parameter
vector. By default, uGMAR uses intercept parametrization.

To exemplify, we build the GMAR p = 2, M = 2 model that is used in the simulation
experiment in Appendix A. The model has intercept parametrization and parameter values
ϑ1 = (0.9, 0.4, 0.2, 0.5), ϑ2 = (0.7, 0.5, −0.2, 0.7), and α1 = 0.7. After building the model, we
use the print method to examine it:

R> params22 <- c(0.9, 0.4, 0.2, 0.5, 0.7, 0.5, -0.2, 0.7, 0.7)

R> mod22 <- GSMAR(p = 2, M = 2, params = params22, model = "GMAR")

R> mod22

Model:

GMAR, p = 2, M = 2, #parameters = 9,

conditional, intercept parametrization, not restricted, no constraints.

Regime 1

Mix weight: 0.70

Reg mean: 2.25

y = [0.90] + [0.40]y.1 + [0.20]y.2 + sqrt[0.50]eps

Regime 2

Mix weight: 0.30

Reg mean: 1.00

y = [0.70] + [0.50]y.1 + [-0.20]y.2 + sqrt[0.70]eps

It is possible to include data in the models built with GSMAR by either providing the data
in the argument data when creating the model or by adding the data afterwards with the
function add_data. When the model is supplied with data, the mixing weights, one-step
conditional means and variances, and quantile residuals can be calculated and included in
the model. The function add_data can also be used to update data to an estimated GSMAR
model without re-estimating the model.

6. Simulation and forecasting

6.1. Simulation

uGMAR implements the S3 method simulate for simulating observations from GSMAR
processes. The method requires the process to be given as a class gsmar object, which are
typically created either by estimating a model with the function fitGSMAR or by specifying
the parameter values by hand and building the model with the constructor function GSMAR.
The initial values required to simulate the Ąrst p observations can be either set by hand (with
the argument init_values) or drawn from the stationary distribution of the process (by
default). The argument nsim sets the length of the sample path to be simulated.
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To give an example, the following code sets the random number generator seed to one and
simulates the 500 observations long sample path that is used in the simulation experiment in
Appendix A from the GMAR process built in Section 5:

R> mysim <- simulate(mod22, nsim = 500, seed = 1)

Our implementation of simulate returns a list containing the simulated sample path in
$sample, the mixture component that generated each observation in $component, and the
mixing weights in $mixing_weights.

6.2. Simulation based forecasting

Deriving multiple-steps-ahead point predictions and prediction intervals analytically for the
GSMAR models is very complicated, so uGMAR employs the following simulation-based
method. By using the last p observations of the data up to the date of forecasting as initial
values, a large number of sample paths for the future values of the process are simulated.
Then, sample quantiles from the simulated sample paths are calculated to obtain prediction
intervals, and the median or mean is used for point predictions. A similar procedure is also
applied to forecast future values of the mixing weights, which might be of interest because
the researcher can often associate speciĄc characteristics to different regimes.

Forecasting is most conveniently done with the predict method. The available arguments
include the number of steps ahead to be predicted (n_ahead), the number sample paths the
forecast is based on (nsimu), possibly multiple conĄdence levels for prediction intervals (pi),
prediction type (pred_type), and prediction interval type (pi_type). The prediction type
can be either median, mean, or for one-step-ahead forecasts also the exact conditional mean,
cond_mean. The prediction interval type can be any of "two-sided", "upper", "lower", or
"none".

As an example, we use the unrestricted G-StMAR p = 4, M1 = 1, M2 = 1 model Ątted to the
monthly interest rate spread in Section 3.4 to forecast the spread 12 months ahead, i.e., for
the year 2021. The point prediction is based on median and 10000 simulated future sample
paths, and the two-sided prediction intervals are calculated for the conĄdence levels 0.95 and
0.80.

R> set.seed(1)

R> mypred <- predict(fit42gs, n_ahead = 12, nsimu = 10000,

+ pi = c(0.95, 0.8), pred_type = "median", pi_type = "two-sided")

R> mypred

Prediction by median, two-sided prediction intervals with levels 0.95, 0.8.

Forecast 12 steps ahead, based on 10000 simulations.

0.025 0.1 median 0.9 0.975

1 0.66 0.74 0.87 1.00 1.11

2 0.55 0.66 0.89 1.13 1.32

3 0.46 0.62 0.90 1.23 1.49

4 0.36 0.56 0.91 1.33 1.65

5 0.26 0.49 0.91 1.45 1.83
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Figure 5: The Ągure created by the predict method for the G-StMAR model fit42gs.
Twelve-months-ahead point prediction for the monthly interest rate spread (top) and the
modelŠs mixing weights (bottom) together with several preceding observations and prediction
intervals with conĄdence levels 0.95 (outer interval) and 0.80 (inner interval).

6 0.17 0.44 0.91 1.55 2.01

7 0.09 0.38 0.91 1.65 2.15

8 0.02 0.34 0.91 1.73 2.26

9 -0.02 0.30 0.92 1.82 2.36

10 -0.05 0.27 0.92 1.89 2.47

11 -0.08 0.25 0.93 1.95 2.58

12 -0.10 0.23 0.93 2.02 2.65

Point forecasts and prediction intervals for mixing weights can be obtained

with $mix_pred and $mix_pred_ints, respectively.

The predict method plots the results by default but this can be also avoided by setting
plot_res = FALSE in the arguments. The results can be plotted afterwards by using the
plot method for the class gsmarpred objects that the predict method returns.

The Ągure created by the above example is presented in Figure 5. The point forecast does
not predict any signiĄcant movements for the spread, but the prediction intervals appear to
be skewed to the right. A possible explanation to the skewed prediction intervals is that
at time of forecasting, the spread takes a value that is closer to the mean of the low-mean
Ąrst regime than to the mean of the high-mean second regime. Hence, even if the process
proceeds in the Ąrst regime, it does not (on average) move much lower, but switching to the
second regime would (on average) lead to notably larger observations. Also, the forecast for
the mixing weights reveals that after a few months, the high-mean second regime is predicted
to become more probable than than the low-mean Ąrst regime, thus, explaining the skewed
prediction intervals.
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Related to Name Description

Estimation fitGSMAR Estimate a GSMAR model.
alt_gsmar Build a GSMAR model based on re-

sults from any estimation round.
stmar_to_gstmar Estimate a G-StMAR model based on

a StMAR (or G-StMAR) model with
large degrees of freedom parameters.

iterate_more Run more iterations of the variable
metric algorithm for a preliminary es-
timated GSMAR model.

Estimates summary (method) Detailed printout of the estimates.
plot (method) Plot the series with the estimated mix-

ing weights and a kernel density esti-
mate of the series with the stationary
density of the model.

get_foc Calculate numerically approximated
gradient of the log-likelihood function
evaluated at the estimate.

get_soc Calculate eigenvalues of numerically
approximated Hessian of the log-
likelihood function evaluated at the es-
timate.

profile_logliks Plot the graphs of the proĄle log-
likelihood functions.

cond_moment_plot Plot the model implied one-step con-
ditional means or variances.

Diagnostics quantile_residual_tests Calculate quantile residual tests.
diagnostic_plot Plot quantile residual diagnostics.
quantile_residual_plot Plot quantile residual time series and

histogram.
Forecasting predict (method) Forecast future observations and mix-

ing weights of the process.
Simulation simulate (method) Simulate from a GSMAR process.
Create model GSMAR Construct a GSMAR model based on

speciĄc parameter values.
Hypothesis testing LR_test Calculate likelihood ratio test.

Wald_test Calculate Wald test.
Other add_data Add data to a GSMAR model

swap_parametrization Swap between mean and intercept
parametrizations

Table 1: Some useful functions in uGMAR sorted according to their usage. The note "method"
in parentheses after the name of a function signiĄes that it is an S3 method for a class gsmar

object (often generated by the function fitGSMAR or GSMAR).
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7. Summary

Mixture autoregressive models are useful for analyzing time series that exhibit nonlinear,
regime-switching features. The GMAR model, the StMAR model, and the G-StMAR model
constitute an appealing family of such models, the GSMAR models, with attractive theo-
retical and practical properties. This paper introduced the R package uGMAR providing a
comprehensive set of easy-to-use tools for GSMAR modeling, including unconstrained and
constrained maximum likelihood estimation of the model parameters, quantile residual based
model diagnostics, simulation, forecasting, and more. For convenience, we have collected
some useful functions in uGMAR to Table 1.

The model parameters are estimated with the method of maximum likelihood by employing
a two-phase procedure, which uses a genetic algorithm to Ąnd starting values for a variable
metric algorithm. Notably, due to the endogenously determined mixing weights, the maximum
likelihood estimate is occasionally found very close to the boundary of the stationarity region
of some regimes. We explained in Appendix A why such estimates might be inappropriate
and showed how a GSMAR model can be built based on an alternative estimate related to
the next-largest local maximum point.

Computational details

The results in this paper were obtained using R 4.1.2 and uGMAR 3.4.1 package running on
MacBook Pro 14", 2021, with Apple M1 Pro processor, 16 Gt of uniĄed RAM, and macOS
Monterey 12.1 operating system.

uGMAR takes use of the R package Brobdingnag (Hankin 2007) to handle values extremely
close to zero in the evaluation of the Ąrst term of the exact log-likelihood function (8). The
package gsl (Hankin 2006) is utilized to calculate some of the quantile residuals (16) with
a hypergeometric function. In order to improve computational efficiency in the numerical
estimation procedure, the formula proposed by Galbraith and Galbraith (1974) is utilized to
directly compute the inverses of the covariance matrices Γm, m = 1, ..., M , (which appear in
(3), (5), (6), and in the Ąrst term of (8)), as only the inverses are required for calculating
the quantities in the log-likelihood function. Finally, the algorithm proposed by Monahan
(1984) is employed to generate random stationary autoregressive coefficients in the genetic
algorithm.

Some of the estimation results (and thereby everything that is calculated based on the es-
timates) may vary slightly when running the code on different computers. This is due to
a small numerical error in the gradient of the log-likelihood function caused by the limited
precision of the Ćoating-point representation. The negligible numerical error accumulates in
each iteration of the variable metric algorithm, which hence advances in slightly different
paths on different computers (with given initial values). After a large number of iterations,
the algorithm might therefore end up in slightly different points. This particularly occurs
when there are StMAR type regimes in the model, possibly because there are many different
pairs of degrees of freedom and variance parameter values that are relatively close to each
other and yield almost the same log-likelihoods.
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A. Simulation experiment

This simulation experiment demonstrates why the log-likelihood functionŠs global maximum
point, that is found very near the boundary of the parameter space, might not be a reasonable
estimate and why it might be more appropriate to consider a local-only maximum point that
is clearly in the interior of the parameter space. We generated 500 observations from a GMAR
p = 2‚ M = 2 process with the parameter values given in the Ąrst row of Table 2 (θ) and
initial values generated from the stationary distribution of the process. This model is built
with uGMAR as an example in Section 5, and the sample path is generated as an example
in Section 6.1.

We estimated a GMAR p = 2‚ M = 2 model to the generated sample based on the exact
log-likelihood function by performing 100 estimation rounds using the following code (output
is omitted for brevity):

R> fit22 <- fitGSMAR(mysim$sample, p = 2, M = 2, model = "GMAR",

+ conditional = FALSE, ncalls = 100, ncores = 8, seeds = 1:100)

The obtained estimates are reported on the second row of Table 2 (θ̂1) together with the
moduli of each regimeŠs AR polynomialŠs (1−

∑p
i=1 φm,iz

i) roots. The modulus of the ith root
in the mth regime is denoted by the symbol ξm,i. The stationarity condition requires that all
the moduli are strictly greater than one, so the second regime is very close to the boundary of
the stationarity region (both roots are approximately 1.000011). Also the variance parameter
σ2

2 is close to its lower bound zero (it is approximately 9 · 10−6).

These estimates produce a large log-likelihood, because the second regimeŠs very small con-
ditional variance makes the related density function in the term lt(θ) (9) to take large values
near its mean, and the strong conditional mean targets individual observations there. This is
illustrated in Figure 6 (bottom panel), where the terms lt(θ) are presented (green solid line)
together with the second regimeŠs related weighted densities α2,tn1(yt; µ2,t, σ2

2) (red dotted
line). The black "X"-symbols denote the points where the second regimeŠs conditional mean
deviates from the corresponding observation by less than 0.005. Evidently, the second regime
contributes to the log-likelihood function only in the individual points where both, the terms
lt(θ) and the scaled densities α2,tn1(yt; µ2,t, σ2

2), take large values due to the observation being
close to the mean of the second regimeŠs spikelike conditional density function. Because the
scaled densities take large enough values in those individual points, the log-likelihood is larger
for this kind of estimate than for a reasonable estimate.

The top panel of Figure 6 presents the true mixing weights of the GMAR processŠs second
regime (black solid line) together with the mixing weights based on the estimate θ̂1 (red
dashed line). As the Ągure shows, the estimated mixing weights are spiky and have no
resemblance to the true mixing weights. Although the true mixing weights can be spiky for
some GSMAR processes, spiking mixing weights are also typical for potentially inappropriate
near-the-boundary estimates.

This kind of near-the-boundary estimates are often found when a subset of the regimes ex-
plains the variation in the series reasonably well, leaving some of the regimes available for
targeting individual observations with very small conditional variance and very strong condi-
tional mean. As such estimates seem to maximize the log-likelihood function for a technical
reason, and not necessarily because they represent a good guess for the true parameter value,
it might be appropriate to consider an alternative estimate related to the next-largest local
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φ1,0 φ1,1 φ1,2 σ2
1 φ2,0 φ2,1 φ2,2 σ2

2 α1 ξ1,1 ξ1,2 ξ2,1 ξ2,2

θ 0.90 0.40 0.20 0.50 0.70 0.50 −0.20 0.70 0.70 1.45 3.45 2.24 2.24

θ̂1 0.58 0.56 0.10 0.61 7.85 −1.67 −1.00 0.00 0.99 1.42 6.86 1.00 1.00

θ̂2 1.16 0.39 0.08 0.54 0.77 0.35 −0.17 0.53 0.63 1.86 6.90 2.42 2.42

Table 2: On the Ąrst row, the true parameter values of the GMAR p = 2, M = 2 process
that generated the sample path used in the simulation experiment. On the second row, the
estimates that maximized the log-likelihood function based 100 estimation rounds. On the
third row, the estimates from the largest such log-likelihood functionŠs maximum point that
is not very near the boundary of the stationarity region. In each row after the estimates or
parameter values, the moduli of the related AR polynomialŠs roots are presented.

Figure 6: On the top, the GMAR p = 2, M = 2 processŠs second regimeŠs true mixing weights
(black solid line), the mixing weights based on the estimate θ̂1 in the second row of Table 2
(red dashed line), and the mixing weights based on the estimate θ̂2 in the third row of Table 2
(blue dashed line). On the bottom, the terms (9) from the second term of the log-likelihood
function (8) (green solid line) and the second regimeŠs densities in the terms (9) multiplied
by the estimated mixing weights (blue dotted line), i.e., α2,tn1(yt; µ2,t, σ2

2), both based on the

estimate θ̂1. The "X"-symbols denote the points where the second regimeŠs conditional mean
for the model based on estimate θ̂1 deviates from the corresponding observation by less than
0.005.
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maximum point. To exemplify, we build a model based on the largest local maximum point
that is clearly in the interior of the parameter space. In our estimation based on 100 rounds
of the two-phase procedure, such an estimate is found at the point that induced the third
largest log-likelihood, and it is obtained as follows:

R> fit22_alt <- alt_gsmar(fit22, which_largest = 3)

The corresponding estimate is presented on the third row of Table 2 (θ̂2). This local maximum
point is substantially closer to the true parameter value in the second regime. The resemblance
to the true parameter value is also highlighted in Figure 6 (top panel), where the second
regimeŠs estimated mixing weights (blue dashed line) are presented together with the true
mixing weights (black solid line).

Finally, observe that the estimate θ̂1 presented in Table 2 is not the accurate maximum likeli-
hood estimate, which can be noticed by examining graphs of the related proĄle log-likelihood
functions with the command profile_logliks(fit22) (not shown). The numerical esti-
mation using numerical approximation for the gradient of the log-likelihood function can
be inaccurate near the boundary of a multidimensional parameter space subject to several
constraints. Consequently, other similar near-the-boundary points that induce larger log-
likelihood than θ̂1 can be found by running more estimation rounds. It should also be noted
that sometimes the estimate is near the boundary of the stationarity region because the series
is very persistent, and being near the boundary does not hence necessarily imply that the
MLE is inappropriate.

B. Closed form expressions of quantile residuals

This section derives closed form expressions for the quantile residuals utilized by uGMAR

and discussed in Section 4. For the GSMAR models, the quantile residuals are deĄned as

Rt = Φ−1(F (yt♣Ft−1)), t = 1, 2, ..., T, (19)

where Φ−1(·) is the standard normal quantile function,

F (yt♣Ft−1) =
M
∑

m=1

αm,t

∫ yt

−∞

fm(ut♣Ft−1)dut (20)

is the conditional cumulative distribution function of the considered GSMAR process (condi-
tional on the previous observations), and fm(·♣Ft−1) is the conditional density function of the
mth component process. To Ąnd a closed form expression for the quantile residuals deĄned
in (19) and (20), it therefore suffices to solve the integrals

∫ yt

−∞
fm(ut♣Ft−1)dut, m = 1, ..., M ,

for GMAR type and StMAR type mixture components.

In the case of a GMAR type component, the conditional density function is the Gaussian
density function with mean µm,t and variance σ2

m. For m ≤ M1 in (20), we therefore have

∫ yt

−∞

fm(ut♣Ft−1)dut =

∫ yt

−∞

n1(ut; µm,t, σ2
m)dut = Φ



ut − µm,t

σm



, (21)

where Φ(·) is the standard normal cumulative distribution function.
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In the case of a StMAR type component, the conditional density function is the StudentŠs t
density function with mean µm,t, variance σ2

m,t, and νm +p degrees of freedom given as (Meitz
et al. 2023, Appendix A)

t1(ut; µm,t, σ2
m,t, νm +p) =

Γ
(

1+νm+p
2



√

π(νm + p − 2)Γ
(

νm+p
2

σ−1
m,t

(

1 +
(ut − µm,t)

2

(νm + p − 2)σ2
m,t



−(1+νm+p)/2

(22)
where Γ (·) is the gamma function. Taking use of the symmetry of the StudentŠs t distribution
about its mean µm,t, we obtain

∫ yt

−∞

fm(ut♣Ft−1)dut =
1

2
+

∫ yt

µm,t

t1(ut; µm,t, σ2
m,t, νm + p)dut. (23)

By applying the change of variables ũm,t ≡ ut − µm,t in the integral, the RHS of (23) can be
expressed as

1

2
+

Γ
(

1+νm+p
2



√

π(νm + p − 2)Γ
(

νm+p
2

σ−1
m,t

∫ ỹm,t

0

(

1 +
ũ2

m,t

am,t



−bm

dũm,t, (24)

where ỹm,t ≡ yt − µm,t, am,t ≡ (νm + p − 2)σ2
m,t, and bm ≡ (1 + νm + p)/2. Then, by applying

the change of variables zm,t ≡ ũ2
m,t/ỹm,t, we can express the integral in the expression (24) as

∫ ỹm,t

0

(

1 +
ũ2

m,t

am,t



−bm

dũm,t =
1

2

∫ ỹm,t

0

(

ỹm,t

zm,t

1/2(

1 +
zm,tỹm,t

am,t



−bm

dzm,t. (25)

By applying the third change of variables xm,t ≡ zm,t/ỹm,t and using the properties of the
gamma function, the RHS of (25) can be expressed using a hypergeometric function as

ỹm,t

2

∫ 1

0
x

−1/2
m,t

(

1 − xm,t

(

−
ỹ2

m,t

am,t



−bm

dxm,t = ỹm,t × 2F1

(

1

2
, bm,

3

2
; −

ỹ2
m,t

am,t



, (26)

where the hypergeometric function is deĄned as (Aomoto and Kita 2011, Section 1.3.1)

2F1 (a, b, c; x) =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0
sa−1(1 − s)c−a−1(1 − sx)−bds, (27)

when ♣x♣ < 1, a > 0, and c − a > 0 (when a, c ∈ R).

Using the above result, we have

∫ yt

−∞

fm(ut♣Ft−1) =
1

2
+

Γ
(

1+νm+p
2



√

π(νm + p − 2)Γ
(

νm+p
2

σ−1
m,tỹm,t × 2F1

(

1

2
, bm,

3

2
; −

ỹ2
m,t

am,t



(28)

for m > M1, whenever

∣

∣

∣

∣

−
ỹ2

m,t

am,t

∣

∣

∣

∣

< 1. That is, the closed form expression (28) exists when

♣yt − µm,t♣ <
√

(νm + p − 2)σ2
m,t. (29)
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If this condition does not hold, uGMAR calculates the quantile residual by numerically inte-
grating the conditional density function fm(·♣Ft−1).
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